Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
Country
InTOR is the institutional digital repository of the Institute of Virology, Vaccines and Sera “Torlak”. It provides open access to publications and other research outputs resulting from the projects implemented by the Institute of Virology, Vaccines and Sera “Torlak”. The software platform of the repository is adapted to the modern standards applied in the dissemination of scientific publications and is compatible with international infrastructure in this field.
BEI Resources was established by the National Institute of Allergy and Infectious Diseases (NIAID) to provide reagents, tools and information for studying Category A, B, and C priority pathogens, emerging infectious disease agents, non-pathogenic microbes and other microbiological materials of relevance to the research community. BEI Resources acquires authenticates, and produces reagents that scientists need to carry out basic research and develop improved diagnostic tests, vaccines, and therapies. By centralizing these functions within BEI Resources, access to and use of these materials in the scientific community is monitored and quality control of the reagents is assured
Country
NODE (The National Omics Data Encyclopedia) provides an integrated, compatible, comparable, and scalable multi-omics resource platform that supports flexible data management and effective data release. NODE uses a hierarchical data architecture to support storage of muti-omics data including sequencing data, MS based proteomics data, MS or NMR based metabolomics data, and fluorescence imaging data. Launched in early 2017, NODE has collected and published over 900 terabytes of omics data for researchers from China and all over the world in last three years, 22% of which contains multiple omics data. NODE provides functions around the whole life cycle of omics data, from data archive, data requests/responses to data sharing, data analysis, data review and publish.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
GigaDB primarily serves as a repository to host data and tools associated with articles published by GigaScience Press; GigaScience and GigaByte (both are online, open-access journals). GigaDB defines a dataset as a group of files (e.g., sequencing data, analyses, imaging files, software programs) that are related to and support a unit-of-work (article or study). GigaDB allows the integration of manuscript publication with supporting data and tools.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.