Filter

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
The Rat Genome Database is a collaborative effort between leading research institutions involved in rat genetic and genomic research. Its goal, as stated in RFA: HL-99-013 is the establishment of a Rat Genome Database, to collect, consolidate, and integrate data generated from ongoing rat genetic and genomic research efforts and make these data widely available to the scientific community. A secondary, but critical goal is to provide curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data.
Country
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
Country
NONCODE is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Now, there are 16 species in NONCODE(human, mouse, cow, rat, chicken, fruitfly, zebrafish, celegans, yeast, Arabidopsis, chimpanzee, gorilla, orangutan, rhesus macaque, opossum and platypus).The source of NONCODE includes literature and other public databases. We searched PubMed using key words ‘ncrna’, ‘noncoding’, ‘non-coding’,‘no code’, ‘non-code’, ‘lncrna’ or ‘lincrna. We retrieved the new identified lncRNAs and their annotation from the Supplementary Material or web site of these articles. Together with the newest data from Ensembl , RefSeq, lncRNAdb and GENCODE were processed through a standard pipeline for each species.
BioGPS is a gene portal built with two guiding principles in mind -- customizability and extensibility. It is a complete resource for learning about gene and protein function. A free extensible and customizable gene annotation portal, a complete resource for learning about gene and protein function.
Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
The PhenoGen website shares experimental data with a worldwide community of investigators and provides a flexible, integrated, multi-resolution repository of neuroscience transcriptomic genetic data for collaborative research on genomic disorders.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
Country
MTD is focused on mammalian transcriptomes with a current version that contains data from humans, mice, rats and pigs. Regarding the core features, the MTD browses genes based on their neighboring genomic coordinates or joint KEGG pathway and provides expression information on exons, transcripts, and genes by integrating them into a genome browser. We developed a novel nomenclature for each transcript that considers its genomic position and transcriptional features.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
Country
The cisRED database holds conserved sequence motifs identified by genome scale motif discovery, similarity, clustering, co-occurrence and coexpression calculations. Sequence inputs include low-coverage genome sequence data and ENCODE data. A Nucleic Acids Research article describes the system architecture
Country
>>>!!!<<< 2017-06-02: We recently suffered a server failure and are working to bring the full ORegAnno website back online. In the meantime, you may download the complete database here: http://www.oreganno.org/dump/ ; Data are also available through UCSC Genome Browser (e.g., hg38 -> Regulation -> ORegAnno) https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=686342163_2it3aVMQVoXWn0wuCjkNOVX39wxy&c=chr1&g=oreganno >>>!!!<<< The Open REGulatory ANNOtation database (ORegAnno) is an open database for the curation of known regulatory elements from scientific literature. Annotation is collected from users worldwide for various biological assays and is automatically cross-referenced against PubMED, Entrez Gene, EnsEMBL, dbSNP, the eVOC: Cell type ontology, and the Taxonomy database, where appropriate, with information regarding the original experimentation performed (evidence). ORegAnno further provides an open validation process for all regulatory annotation in the public domain. Assigned validators receive notification of new records in the database and are able to cross-reference the citation to ensure record integrity. Validators have the ability to modify any record (deprecating the old record and creating a new one) if an error is found. Further, any contributor to the database can comment on any annotation by marking errors, or adding special reports into function as they see fit. These features of ORegAnno ensure that the collection is of the highest quality and uniquely provides a dynamic view of our changing understanding of gene regulation in the various genomes.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information