Filter

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 38 result(s)
The modENCODE Project, Model Organism ENCyclopedia Of DNA Elements, was initiated by the funding of applications received in response to Requests for Applications (RFAs) HG-06-006, entitled Identification of All Functional Elements in Selected Model Organism Genomes and HG-06-007, entitled A Data Coordination Center for the Model Organism ENCODE Project (modENCODE). The modENCODE Project is being run as an open consortium and welcomes any investigator willing to abide by the criteria for participation that have been established for the project. Both computational and experimental approaches are being applied by modENCODE investigators to study the genomes of D. melanogaster and C. elegans. An added benefit of studying functional elements in model organisms is the ability to biologically validate the elements discovered using methods that cannot be applied in humans. The comprehensive dataset that is expected to result from the modENCODE Project will provide important insights into the biology of D. melanogaster and C. elegans as well as other organisms, including humans.
Content type(s)
Country
Marine Microbial Database of India is an initiative of CSIR National Institute of Oceanography (NIO). It is supported by Council of Scientific and Industrial Research (CSIR) and managed by Biodiversity Informatics Group (BIG), Bioinformatics Centre of the NIO. It contains records about 1,814 marine microbes. Each record provides information on microbe’s location, habitat, importance (of the organism), threats (to the organism). The database also provides a Taxonomic Hierarchy and Scientific Name Index.
ZFIN serves as the zebrafish model organism database. The long term goals for ZFIN are a) to be the community database resource for the laboratory use of zebrafish, b) to develop and support integrated zebrafish genetic, genomic and developmental information, c) to maintain the definitive reference data sets of zebrafish research information, d) to link this information extensively to corresponding data in other model organism and human databases, e) to facilitate the use of zebrafish as a model for human biology and f) to serve the needs of the research community. ZIRC is the Zebrafish International Resource Center, an independent NIH-funded facility providing a wide range of zebrafish lines, probes and health services. ZFIN works closely with ZIRC to connect our genetic data with available probes and fish lines.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
Candida Genome Database, a resource for genomic sequence data and gene and protein information for Candida albicans and related species. CGD is based on the Saccharomyces Genome Database. The Candida Genome Database (CGD) provides online access to genomic sequence data and manually curated functional information about genes and proteins of the human pathogen Candida albicans and related species. C. albicans is the best studied of the human fungal pathogens. It is a common commensal organism of healthy individuals, but can cause debilitating mucosal infections and life-threatening systemic infections, especially in immunocompromised patients. C. albicans also serves as a model organism for the study of other fungal pathogens.
OpenWorm aims to build the first comprehensive computational model of the Caenorhabditis elegans (C. elegans), a microscopic roundworm. With only a thousand cells, it solves basic problems such as feeding, mate-finding and predator avoidance. Despite being extremely well studied in biology, this organism still eludes a deep, principled understanding of its biology. We are using a bottom-up approach, aimed at observing the worm behaviour emerge from a simulation of data derived from scientific experiments carried out over the past decade. To do so we are incorporating the data available in the scientific community into software models. We are engineering Geppetto and Sibernetic, open-source simulation platforms, to be able to run these different models in concert. We are also forging new collaborations with universities and research institutes to collect data that fill in the gaps All the code we produce in the OpenWorm project is Open Source and available on GitHub.
The NCBI Taxonomy database is a curated set of names and classifications for all of the organisms that are represented in GenBank. The EMBL and DDBJ databases, as well as GenBank, now use the NCBI Taxonomy as the standard classification for nucleotide sequences. Taxonomy Contains the names and phylogenetic lineages of more than 160,000 organisms that have molecular data in the NCBI databases. New taxa are added to the Taxonomy database as data are deposited for them. When new sequences are submitted to GenBank, the submission is checked for new organism names, which are then classified and added to the Taxonomy database.
The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
FlyBase is a database of genetic, genomic and functional data for Drosophila species, with a focus on the model organism Drosophila melanogaster.FlyBase contains a complete annotation of the Drosophila melanogaster genome that is updated several times per year.It also includes a searchable bibliography of research on Drosophila genetics in the last century. The site also provides a large database of images illustrating the full genome, and several movies detailing embryogenesis.
Country
The species Nothobranchius furzeri possesses several characteristics which make it a particularly attractive model system for age research: Inbred line GRZ shows a captive lifespan of only three months. There is large variation in life-history traits between different isolates. Lifespan can be prolonged by environmental manipulations and drugs. The aim of this website is to provide information on N. furzeri and to foster the development of a group of interest which aims at creating a consortium to establish this organism as a model for developmental and age research.
BsubCyc is a model-organism database for the bacterium Bacillus subtilis and is based on the updated B. subtilis 168 genome sequence and annotation published by Barbe et al. in 2009. Gene function annotations are being updated when new literature is available. Subscriptions are now required to access BsubCyc. For more information on obtaining a subscription, click here: http://www.phoenixbioinformatics.org/biocyc/subscriptions.html
Country
The main objective of our work is to understand the pathomechanisms of late onset neurodegenerative disorders such as Huntington's, Parkinson's, Alzheimer's and Machado Joseph disease and to develop causal therapies for them. The disease causing proteins of these illnesses have been identified, but their functions in the unaffected organism are mostly unknown. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD).
KiMoSys, a web application for quantitative KInetic MOdels of biological SYStems. Kinetic models, with the aim to understand and subsequently design the metabolism of organism of interest are constructed iteratively and require accurate experimental data for both the generation and verification of hypotheses. Therefore, there is a growing requirement for exchanging experimental data and models between the systems biology community, and to automate as much as possible the kinetic model building, editing, simulation and analysis steps.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
>>>!!!<<< SMD has been retired. After approximately fifteen years of microarray-centric research service, the Stanford Microarray Database has been retired. We apologize for any inconvenience; please read below for possible resolutions to your queries. If you are looking for any raw data that was directly linked to SMD from a manuscript, please search one of the public repositories. NCBI Gene Expression Omnibus EBI ArrayExpress All published data were previously communicated to one (or both) of the public repositories. Alternatively, data for publications between 1997 and 2004 were likely migrated to the Princeton University MicroArray Database, and are accessible there. If you are looking for a manuscript supplement (i.e. from a domain other than smd.stanford.edu), perhaps try searching the Internet Archive: Wayback Machine https://archive.org/web/ . >>>!!!<<< The Stanford Microarray Database (SMD) is a DNA microarray research database that provides a large amount of data for public use.
The NCBI Short Genetic Variations database, commonly known as dbSNP, catalogs short variations in nucleotide sequences from a wide range of organisms. These variations include single nucleotide variations, short nucleotide insertions and deletions, short tandem repeats and microsatellites. Short Genetic Variations may be common, thus representing true polymorphisms, or they may be rare. Some rare human entries have additional information associated withthem, including disease associations, genotype information and allele origin, as some variations are somatic rather than germline events. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017***
Country
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies
BeeBase provides gene sequences and genomes of Bombus terrestris, B. impatiens, Apis mellifera and three of its pathogens. BeeBase data is discoverable and analyzed via genome browsers, blast search, and apollo annotation tool.
The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Launched in 2000, WormBase is an international consortium of biologists and computer scientists dedicated to providing the research community with accurate, current, accessible information concerning the genetics, genomics and biology of C. elegans and some related nematodes. In addition to their curation work, all sites have ongoing programs in bioinformatics research to develop the next generations of WormBase structure, content and accessibility
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
BioGRID ORCS is an open repository of CRISPR screens compiled through comprehensive curation efforts. The current index is version 1.0.3 and searches more than 49 publications and 58,161 genes to return more than 895 CRISPR screens from 3 major model organism species and 629 cell lines. All screen data are freely provided through our search index and available via download in a wide variety of standardized formats.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
>>>>!!!!<<<< AspGD data are being integrated into FungiDB. Please click here for additional details http://fungidb.org/ . Discussion of how to maximize the value of FungiDB for the Aspergillus research community will be a major topic at the upcoming AsperFest12 meeting at Asilomar (March 16-17, 2015). >>>>!!!!<<<< AspGD is an organized collection of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). AspGD contains information about genes and proteins of multiple Aspergillus species; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Aspergillus species.