Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
The CGSC Database of E. coli genetic information includes genotypes and reference information for the strains in the CGSC collection, the names, synonyms, properties, and map position for genes, gene product information, and information on specific mutations and references to primary literature. The public version of the database includes this information and can be queried directly via this CGSC DB WebServer
The Arabidopsis Information Resource (TAIR) maintains a database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana . Data available from TAIR includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from our data pages to other Arabidopsis resources.
<<<!!!<<< The ArkDB is now CLOSED With apologies to anyone who still relies on the ArkDB data system or map-drawing tools, we've had to take the difficult decision to shut down the ArkDB system. We've not been funded to maintain it for many years now and have kept it in the air as best we could with the time that we had available but recent changes in personnel and continuing updates to the underpinning libraries mean that the effort required to keep it going outweighs the perceived benefits. If you feel that this is the wrong decision, please contact us to let us know and we'll see what we can do together You can always contact us on our Roslin Bioinformatics email address (roslin.bioinformatics@roslin.ed.ac.uk) The Roslin Bioinformatics Team 21st November 2018 >>>!!!>>>
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
<<<!!!<<<The repository is no longer available <<<!!!<<< TOXNET has moved. Most content will continue to be collected and reviewed; selected information is accessible through PubChem, PubMed, and Bookshelf. If you have questions, please contact NLM Customer Support at https://support.nlm.nih.gov/ >>>!!!>>>
The Drosophila Synthetic Population Resource (DSPR) consists of a new panel of over 1700 recombinant inbred lines (RILs) of Drosophila melanogaster, derived from two highly recombined synthetic populations, each created by intercrossing a different set of 8 inbred founder lines (with one founder line common to both populations). Complete genome sequence data for the founder lines are available, and in addition, there is a high resolution genetic map for each RIL. The DSPR has been developed as a community resource for high-resolution QTL mapping and is intended to be used widely by the Drosophila community.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.