Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
Earth Resources Observation and Science (EROS) Center is a remotely sensed data management, systems development, and research field center for the U.S. Geological Survey's (USGS) Climate and Land Use Change Mission Area. The USGS is a bureau of the U.S. Department of the Interior. It currently houses one of the largest computer complexes in the Department of the Interior. EROS has approximately 600 government and contractor employees.
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
Earthdata powered by EOSDIS (Earth Observing System Data and Information System) is a key core capability in NASA’s Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA’s Earth science data from various sources – satellites, aircraft, field measurements, and various other programs. EOSDIS uses the metadata and service discovery tool Earthdata Search https://search.earthdata.nasa.gov/search. The capabilities of EOSDIS constituting the EOSDIS Science Operations are managed by NASA's Earth Science Data and Information System (ESDIS) Project. The capabilities include: generation of higher level (Level 1-4) science data products for several satellite missions; archiving and distribution of data products from Earth observation satellite missions, as well as aircraft and field measurement campaigns. The EOSDIS science operations are performed within a distributed system of many interconnected nodes - Science Investigator-led Processing Systems (SIPS), and distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs) with specific responsibilities for production, archiving, and distribution of Earth science data products. The DAACs serve a large and diverse user community by providing capabilities to search and access science data products and specialized services.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.
LAADS DAAC is the web interface to the Level 1 and Atmosphere Archive and Distribution System (LAADS). The mission of LAADS is to provide quick and easy access to MODIS Level 1, Atmosphere and Land data products, VIIRS Level 1 and Land data products MAS and MERIS data products. MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.
The SAR Data Center has a large data archive of Synthetic Aperture Radar (SAR) from a variety of sensors available at no cost. Much of the SAR data in the ASF SDC archive is limited in distribution to the scientific research community and U.S. Government Agencies. In accordance with the Memoranda of Understanding (MOU) between the relevant flight agencies (CSA, ESA, JAXA) and the U.S. State Department, the ASF SDC does not distribute SAR data for commercial use. The research community can access the data (ERS-1, ERS-2, JERS-1, RADARSAT-1, and ALOS PALSAR) via a brief proposal process.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
TERN provides open data, research and management tools, data infrastructure and site-based research equipment. The open access ecosystem data is provided by TERN Data Discovery Portal , see https://www.re3data.org/repository/r3d100012013
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Country
The MOSES Data Discovery Portal is the central component of the MOSES data management infrastructure. It holds the metadata of MOSES campaigns, sensors and data and enables high-performance data searches. In addition, it provides access to the decentral data repositories and infrastructures of the participating Helmholtz centers where MOSES data is stored.
The Arctic Data Center is the primary data and software repository for the Arctic section of NSF Polar Programs. The Center helps the research community to reproducibly preserve and discover all products of NSF-funded research in the Arctic, including data, metadata, software, documents, and provenance that links these together. The repository is open to contributions from NSF Arctic investigators, and data are released under an open license (CC-BY, CC0, depending on the choice of the contributor). All science, engineering, and education research supported by the NSF Arctic research program are included, such as Natural Sciences (Geoscience, Earth Science, Oceanography, Ecology, Atmospheric Science, Biology, etc.) and Social Sciences (Archeology, Anthropology, Social Science, etc.). Key to the initiative is the partnership between NCEAS at UC Santa Barbara, DataONE, and NOAA’s NCEI, each of which bring critical capabilities to the Center. Infrastructure from the successful NSF-sponsored DataONE federation of data repositories enables data replication to NCEI, providing both offsite and institutional diversity that are critical to long term preservation.
Content type(s)
The Network for the Detection of Atmospheric Composition Change (NDACC), a major contributor to the worldwide atmospheric research effort, consists of a set of globally distributed research stations providing consistent, standardized, long-term measurements of atmospheric trace gases, particles, spectral UV radiation reaching the Earth's surface, and physical parameters, centered around the following priorities.