Reset all


Content Types


AID systems


Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
Content type(s)
Genome resource samples of wild animals, particularly those of endangered mammalian and avian species, are very difficult to collect. In Korea, many of these animals such as tigers, leopards, bears, wolves, foxes, gorals, and river otters, are either already extinct, long before the Korean biologists had the opportunity to study them, or are near extinction. Therefore, proposal for a systematic collection and preservation of genetic samples of these precious animals was adopted by Korea Science & Engineering Foundation (KOSEF). As an outcome, Conservation Genome Resource Bank for Korean Wildlife (CGRB; was established in 2002 at the College of Veterinary Medicine, Seoul National University as one of the Special Research Materials Bank supported by the Scientific and Research Infrastructure Building Program of KOSEF. CGRB operates in collaboration with Seoul Grand Park Zoo managed by Seoul Metropolitan Government, and has offices and laboratories at both Seoul National University and Seoul Grand Park, where duplicate samples are maintained, thereby assuring a long-term, safe preservation of the samples. Thus, CGRB is the first example of the collaborative scientific infrastructure program between university and zoo in Korea.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
Genome track alignments using GBrowse on this site are featured with: (1) Annotated and predicted genes and transcripts; (2) QTL / SNP Association tracks; (3) OMIA genes; (4) Various SNP Chip tracks; (5) Other mapping fetures or elements that are available.
ArkDB is a generic, species-independent database built to capture the state of published information on genome mapping in a given species. It stores details of references, markers and loci and genetic linkage and cytogenetic maps which can be drawn using the online map-drawing application. Data from linkage maps held within the ArkDB system can be drawn alongside their corresponding genome sequence maps (extracted from ENSEMBL).
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The taxonomically broad EST database TBestDB serves as a repository for EST data from a wide range of eukaryotes, many of which have previously not been thoroughly investigated. Most of the data contained in TBestDB has been generated by the labs of the Protist EST Program located in six universities across Canada. PEP is a large interdisciplinaryresearch project, involving six Canadian universities. PEP aims at the exploration of the diversity of eukaryotic genomes in a systematic, comprehensive and integrated way. The focus is on unicellular microbial eukaryotes, known as protists. Protistan eukaryotes comprise more than a dozen major lineages that, together, encompass more evolutionary, ecological and probably biochemical diversity than the multicellular kingdoms of animals, plants and fungi combined. PEP is a unique endeavor in that it is the first phylogenetically-broad genomic investigation of protists.
mentha archives evidence collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. The aggregated data forms an interactome which includes many organisms. mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. mentha offers eight interactomes (Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli K12, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae) plus a global network that comprises every organism, including those not mentioned. The website and the graphical application are designed to make the data stored in mentha accessible and analysable to all users. Source databases are: MINT, IntAct, DIP, MatrixDB and BioGRID.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.