Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 45 result(s)
The CancerData site is an effort of the Medical Informatics and Knowledge Engineering team (MIKE for short) of Maastro Clinic, Maastricht, The Netherlands. Our activities in the field of medical image analysis and data modelling are visible in a number of projects we are running. CancerData is offering several datasets. They are grouped in collections and can be public or private. You can search for public datasets in the NBIA (National Biomedical Imaging Archive) image archives without logging in.
Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
The WorldWide Antimalarial Resistance Network (WWARN) is a collaborative platform generating innovative resources and reliable evidence to inform the malaria community on the factors affecting the efficacy of antimalarial medicines. Access to data is provided through diverse Tools and Resources: WWARN Explorer, Molecular Surveyor K13 Methodology, Molecular Surveyor pfmdr1 & pfcrt, Molecular Surveyor dhfr & dhps.
ICRISAT performs crop improvement research, using conventional as well as methods derived from biotechnology, on the following crops: Chickpea, Pigeonpea, Groundnut, Pearl millet,Sorghum and Small millets. ICRISAT's data repository collects, preserves and facilitates access to the datasets produced by ICRISAT researchers to all users who are interested in. Data includes Phenotypic, Genotypic, Social Science, and Spatial data, Soil and Weather.
RDP provides quality-controlled, aligned and annotated Bacterial and Archaeal 16S rRNA sequences, and Fungal 28S rRNA sequences, and a suite of analysis tools to the scientific community.
>>>!!!<<< SMD has been retired. After approximately fifteen years of microarray-centric research service, the Stanford Microarray Database has been retired. We apologize for any inconvenience; please read below for possible resolutions to your queries. If you are looking for any raw data that was directly linked to SMD from a manuscript, please search one of the public repositories. NCBI Gene Expression Omnibus EBI ArrayExpress All published data were previously communicated to one (or both) of the public repositories. Alternatively, data for publications between 1997 and 2004 were likely migrated to the Princeton University MicroArray Database, and are accessible there. If you are looking for a manuscript supplement (i.e. from a domain other than smd.stanford.edu), perhaps try searching the Internet Archive: Wayback Machine https://archive.org/web/ . >>>!!!<<< The Stanford Microarray Database (SMD) is a DNA microarray research database that provides a large amount of data for public use.
caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanoLab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical and in vitro assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.
The Australian National University undertake work to collect and publish metadata about research data held by ANU, and in the case of four discipline areas, Earth Sciences, Astronomy, Phenomics and Digital Humanities to develop pipelines and tools to enable the publication of research data using a common and repeatable approach. Aims and outcomes: To identify and describe research data held at ANU, to develop a consistent approach to the publication of metadata on the University's data holdings: Identification and curation of significant orphan data sets that might otherwise be lost or inadvertently destroyed, to develop a culture of data data sharing and data re-use.
Human Proteinpedia is a community portal for sharing and integration of human protein data. This is a joint project between Pandey at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. This portal allows research laboratories around the world to contribute and maintain protein annotations. Human Protein Reference Database (HPRD) integrates data, that is deposited in Human Proteinpedia along with the existing literature curated information in the context of an individual protein. All the public data contributed to Human Proteinpedia can be queried, viewed and downloaded. Data pertaining to post-translational modifications, protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships may be deposited.
This interface provides access to several types of data related to the Chesapeake Bay. Bay Program databases can be queried based upon user-defined inputs such as geographic region and date range. Each query results in a downloadable, tab- or comma-delimited text file that can be imported to any program (e.g., SAS, Excel, Access) for further analysis. Comments regarding the interface are encouraged. Questions in reference to the data should be addressed to the contact provided on subsequent pages.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 19 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
This is a database for vegetation data from West Africa, i.e. phytosociological and dendrometric relevés as well as floristic inventories. The West African Vegetation Database has been developed in the framework of the projects “Sustainable Use of Natural Vegetation in West Africa” (SUN, http://www.sunproject.dk/) and “Biodiversity Transect Analysis in Africa” (BIOTA, http://www.biota-africa.org/).
The MG-RAST server is an open source system for annotation and comparative analysis of metagenomes. Users can upload raw sequence data in fasta format; the sequences will be normalized and processed and summaries automatically generated. The server provides several methods to access the different data types, including phylogenetic and metabolic reconstructions, and the ability to compare the metabolism and annotations of one or more metagenomes and genomes. In addition, the server offers a comprehensive search capability. Access to the data is password protected, and all data generated by the automated pipeline is available for download in a variety of common formats. MG-RAST has become an unofficial repository for metagenomic data, providing a means to make your data public so that it is available for download and viewing of the analysis without registration, as well as a static link that you can use in publications. It also requires that you include experimental metadata about your sample when it is made public to increase the usefulness to the community.
The ETH Data Archive is ETH Zurich's institutional digital long-term archive. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit file based research data from all domains. In particular, supplementary material to publications is deposited and published here. Research data includes raw data, processed data, software code and other data considered relevant to ensure reproducibility of research results or to facilitate re-use for new research questions. The ETH Data Archive contains both public research data with DOI and data with restricted access. Beyond this, born digital and digitized documents and other data from libraries, collections and archives are preserved in the ETH Data Archive, usually in the form of a dark archive without public access. You find open access data by searching the Knowledge Portal. You may either narrow your search to the Resource Type "Research Data" or the Collection "ETH Data Archive".
CODEX is a database of NGS mouse and human experiments. Although, the main focus of CODEX is Haematopoiesis and Embryonic systems, the database includes a large variety of cell types. In addition to the publically available data, CODEX also includes a private site hosting non-published data. CODEX provides access to processed and curated NGS experiments. To use CODEX: (i) select a specialized repository (HAEMCODE or ESCODE) or choose the whole compendium (CODEX), then (ii) filter by organism and (iii) choose how to explore the database.
Synapse is an open source software platform that clinical and biological data scientists can use to carry out, track, and communicate their research in real time. Synapse enables co-location of scientific content (data, code, results) and narrative descriptions of that work.
NURSA began in 2002 with the objective to accrue, develop and communicate information about the nuclear receptor superfamily. Over the last ten years, NURSA has developed a website that has developed into a comprehensive source of information about nuclear receptors, and their co-regulators, ligands, and downstream targets. Through a series of integrated 'omics-scale and informatic approaches projects, NURSA has fostered a systems biology understanding of nuclear receptor function, physiology and regulation of target gene networks in vivo.
The Avian Knowledge Network (AKN) is an international network of governmental and non-governmental institutions and individuals linking avian conservation, monitoring and science through efficient data management and coordinated development of useful solutions using best-science practices based on the data.
Content type(s)
While focused on supporting the scientific community, ATCC activities range widely, from repository-related operations to providing specialized services, conducting in-house R&D and intellectual property management. ATCC serves U.S. and international researchers by characterizing cell lines, bacteria, viruses, fungi and protozoa, as well as developing and evaluating assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities. Our management philosophy emphasizes customer satisfaction, value addition, cost-effective operations and competitive benchmarking for all areas of our enterprise.
TEAM is devoted to monitoring long-term trends in biodiversity, land cover change, climate and ecosystem services in tropical forests. Tropical forests received first billing because of their overwhelming significance to the global biosphere (e.g., their disproportionately large role in global carbon and energy cycles) and because of the extraordinary threats they face. About 50 percent of the species described on Earth, and an even larger proportion of species not yet described, occur in tropical forests. TEAM aims to measure and compare plants, terrestrial mammals, ground-dwelling birds and climate using a standard methodology in a range of tropical forests, from relatively pristine places to those most affected by people. TEAM currently operates in sixteen tropical forest sites across Africa, Asia and Latin America supporting a network of scientists committed to standardized methods of data collection to quantify how plants and animals respond to pressures such as climate change and human encroachment.
!! OFFLINE !! A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
GeneWeaver combines cross-species data and gene entity integration, scalable hierarchical analysis of user data with a community-built and curated data archive of gene sets and gene networks, and tools for data driven comparison of user-defined biological, behavioral and disease concepts. Gene Weaver allows users to integrate gene sets across species, tissue and experimental platform. It differs from conventional gene set over-representation analysis tools in that it allows users to evaluate intersections among all combinations of a collection of gene sets, including, but not limited to annotations to controlled vocabularies. There are numerous applications of this approach. Sets can be stored, shared and compared privately, among user defined groups of investigators, and across all users.