Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 28 result(s)
The objective of this Research Coordination Network project is to develop an international network of researchers who use genetic methodologies to study the ecology and evolution of marine organisms in the Indo-Pacific to share data, ideas and methods. The tropical Indian and Pacific Oceans encompass the largest biogeographic region on the planet, the Indo-Pacific
The JenAge Ageing Factor Database AgeFactDB is aimed at the collection and integration of ageing phenotype and lifespan data. Ageing factors are genes, chemical compounds or other factors such as dietary restriction, for example. In a first step ageing-related data are primarily taken from existing databases. In addition, new ageing-related information is included both by manual and automatic information extraction from the scientific literature. Based on a homology analysis, AgeFactDB also includes genes that are homologous to known ageing-related genes. These homologs are considered as candidate or putative ageing-related genes.
Edinburgh DataShare is an online digital repository of multi-disciplinary research datasets produced at the University of Edinburgh, hosted by the Data Library in Information Services. Edinburgh University researchers who have produced research data associated with an existing or forthcoming publication, or which has potential use for other researchers, are invited to upload their dataset for sharing and safekeeping. A persistent identifier and suggested citation will be provided.
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is
Human Proteinpedia is a community portal for sharing and integration of human protein data. This is a joint project between Pandey at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. This portal allows research laboratories around the world to contribute and maintain protein annotations. Human Protein Reference Database (HPRD) integrates data, that is deposited in Human Proteinpedia along with the existing literature curated information in the context of an individual protein. All the public data contributed to Human Proteinpedia can be queried, viewed and downloaded. Data pertaining to post-translational modifications, protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships may be deposited.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 19 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
The NCI's Genomic Data Commons (GDC) provides the cancer research community with a unified data repository that enables data sharing across cancer genomic studies in support of precision medicine. The GDC obtains validated datasets from NCI programs in which the strategies for tissue collection couples quantity with high quality. Tools are provided to guide data submissions by researchers and institutions.
GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. It automatically integrates gene-centric data from ~125 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.
This site is dedicated to making high value health data more accessible to entrepreneurs, researchers, and policy makers in the hopes of better health outcomes for all. In a recent article, Todd Park, United States Chief Technology Officer, captured the essence of what the Health Data Initiative is all about and why our efforts here are so important.
Human Protein Reference Database (HPRD) has been established by a team of biologists, bioinformaticists and software engineers. This is a joint project between the PandeyLab at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. HPRD is a definitive repository of human proteins. This database should serve as a ready reckoner for researchers in their quest for drug discovery, identification of disease markers and promote biomedical research in general. Human Proteinpedia ( is its associated data portal.
Recode2 is a database of genes that utilize non-standard translation for gene expression purposes. Recoding events described in the database include programmed ribosomal frameshifting, translational bypassing (aka hopping) and mRNA specific codon redefinition. Frameshifting at a particular site often yields two protein products from one coding sequence and sometimes serves a regulatory purpose by acting as a sensor of the level of product protein or of some external ligand. Bypassing (hopping) allows the coupling of two ORFs separated on an mRNA by a coding gap. Codon redefinition occurs when a stop codon is decoded as a standard amino acid (often glutamine or tryptophan), or the 21st amino acid selenocysteine. These recoding events are in competition with standard decoding and are site specific. The efficiency of recoding is often modulated by cis-stimulators and sometimes by trans-factors. The sequences of the genes that use recoding for their expression are in the database. The recoding sites and the known stimulatory signals are annotated in the database together with notes on factors that are known to affect recoding efficiencies.
The Cancer Genomics Hub (CGHub) is a secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. Access to CGHub Data: All researchers using CGHub must meet the access and use criteria established by the National Institutes of Health (NIH) to ensure the privacy, security, and integrity of participant data. CGHub also hosts some publicly available data, in particular data from the Cancer Cell Line Encyclopedia. All metadata is publicly available and the catalog of metadata and associated BAMs can be explored using the CGHub Data Browser.
!! OFFLINE !! A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 ( and is expected to take about three years.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
HumanCyc provides an encyclopedic reference on human metabolic pathways. It provides a zoomable human metabolic map diagram, and it has been used to generate a steady-state quantitative model of human metabolism.
The GSS database collects unannotated, short, single-read, primary genomic sequences from GenBank and contains nucleic acid sequences. These sequences include random survey sequences, clone-end sequences, and exon-trapped sequences.
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies
MalaCards is an integrated database of human maladies and their annotations, modeled on the architecture and richness of the popular GeneCards database of human genes. MalaCards mines and merges varied web data sources to generate a computerized web card for each human disease. Each MalaCard contains disease specific prioritized annotative information, as well as links between associated diseases, leveraging the GeneCards relational database, search engine, and GeneDecks set-distillation tool. As proofs of concept of the search/distill/infer pipeline we find expected elucidations, as well as potentially novel ones.
The Mouse Phenome Database (MPD; has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection of strains for experimental studies.
>>>!!!<<<As stated 2017-05-23 Cancer GEnome Mine is no longer available >>>!!!<<< Cancer GEnome Mine is a public database for storing clinical information about tumor samples and microarray data, with emphasis on array comparative genomic hybridization (aCGH) and data mining of gene copy number changes.