Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Country
The goals of FMGP are to: (i) sequence complete mitochondrial genomes from all major fungal lineages, (ii) infer a robust fungal phylogeny, (iii) define the origin of the fungi, their protistan ancestors, and their specific phylogenetic link to the animals, (iv) investigate mitochondrial gene expression, introns, RNAse P RNA structures, mobile elements.
Country
Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.