Reset all


Content Types




Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanoLab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical and in vitro assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.
The IMEx consortium is an international collaboration between a group of major public interaction data providers who have agreed to share curation effort and develop and work to a single set of curation rules when capturing data from both directly deposited interaction data or from publications in peer-reviewed journals, capture full details of an interaction in a “deep” curation model, perform a complete curation of all protein-protein interactions experimentally demonstrated within a publication, make these interaction available in a single search interface on a common website, provide the data in standards compliant download formats, make all IMEx records freely accessible under the Creative Commons Attribution License
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 19 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
The Exome Aggregation Consortium (ExAC) is a coalition of investigators seeking to aggregate and harmonize exome sequencing data from a wide variety of large-scale sequencing projects, and to make summary data available for the wider scientific community. The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies.
The Mouse Atlas of Gene Expression is a quantitative and comprehensive atlas of gene expression in mouse development. Gene expression levels from 198 tissue samples was measured using 202 Serial Analysis of Gene Expression (SAGE). Emphasis was on mouse development, samples taken at different stages of mouse development.
CEEHRC represents a multi-stage funding commitment by the Canadian Institutes of Health Research (CIHR) and multiple Canadian and international partners. The overall aim is to position Canada at the forefront of international efforts to translate new discoveries in the field of epigenetics into improved human health. The two sites will focus on sequencing human reference epigenomes and developing new technologies and protocols; they will also serve as platforms for other CEEHRC funding initiatives, such as catalyst and team grants. The complementary reference epigenome mapping efforts of the two sites will focus on a range of common human diseases. The Vancouver group will focus on the role of epigenetics in the development of cancer, including lymphoma and cancers of the ovary, colon, breast, and thyroid. The Montreal team will focus on autoimmune / inflammatory, cardio-metabolic, and neuropsychiatric diseases, using studies of identical twins as well as animal models of human disease.
Patient Reported Outcomes Following Initial treatment and Long term Evaluation of Survivorship (PROFILES)’ is a registry for the study of the physical and psychosocial impact of cancer and its treatment from a dynamic, growing population-based cohort of both short and long-term cancer survivors. Researchers from the Netherlands Comprehensive Cancer Centre and Tilburg University in Tilburg, The Netherlands, work together with medical specialists from national hospitals in order to setup different PROFILES studies, collect the necessary data, and present the results in scientific journals and (inter)national conferences.
ALEXA is a microarray design platform for 'alternative expression analysis'. This platform facilitates the design of expression arrays for analysis of mRNA isoforms generated from a single locus by the use of alternative transcription initiation, splicing and polyadenylation sites. We use the term 'ALEXA' to describe a collection of novel genomic methods for 'alternative expression' analysis. 'Alternative expression' refers to the identification and quantification of alternative mRNA transcripts produced by alternative transcript initiation, alternative splicing and alternative polyadenylation. This website provides supplementary materials, source code and other downloads for recent publications describing our studies of alternative expression (AE). Most recently we have developed a method, 'ALEXA-Seq' and associated resources for alternative expression analysis by massively parallel RNA sequencing.