Reset all


Content Types


AID systems


Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 28 result(s)
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
This Animal Quantitative Trait Loci (QTL) database (Animal QTLdb) is designed to house all publicly available QTL and trait mapping data (i.e. trait and genome location association data; collectively called "QTL data" on this site) on livestock animal species for easily locating and making comparisons within and between species. New database tools are continuely added to align the QTL and association data to other types of genome information, such as annotated genes, RH / SNP markers, and human genome maps. Besides the QTL data from species listed below, the QTLdb is open to house QTL/association date from other animal species where feasible. Note that the JAS along with other journals, now require that new QTL/association data be entered into a QTL database as part of their publication requirements.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
The Cancer Imaging Archive is a freely accessible repository containing medical images and supporting data from cancer patients. Images are stored in DICOM file format. The images are organized as “Collections”, typically patients related by a common disease (e.g. lung cancer), image modality (MRI, CT, etc) or research focus. Search functionality allows users to query across Collections or within them to filter out only the data they are most interested in.
This site offers an enormous collection of photographs of wild species and natural history objects. It covers most groups of organisms with the exception of birds and other vertebrates. The photographs are presented to illustrate biodiversity and as an aid to identification. The criterion for inclusion of a species is that it must have been, or might be expected to be, found in Britain or Ireland. BioImages follows the biological classification. This is a hierarchical system with species grouped in genera, genera in families, families in orders and so on up to kingdoms and superkingdoms. Biota takes you to the top of the classification tree.
The Rat Genome Database is a collaborative effort between leading research institutions involved in rat genetic and genomic research. Its goal, as stated in RFA: HL-99-013 is the establishment of a Rat Genome Database, to collect, consolidate, and integrate data generated from ongoing rat genetic and genomic research efforts and make these data widely available to the scientific community. A secondary, but critical goal is to provide curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data.
Launched in 2000, WormBase is an international consortium of biologists and computer scientists dedicated to providing the research community with accurate, current, accessible information concerning the genetics, genomics and biology of C. elegans and some related nematodes. In addition to their curation work, all sites have ongoing programs in bioinformatics research to develop the next generations of WormBase structure, content and accessibility
UniGene collects entries of transcript sequences from transcription loci from genes or expressed pseudogenes. Entries also contain information on the protein similarities, gene expressions, cDNA clone reagents, and genomic locations.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
The Mouse Atlas of Gene Expression is a quantitative and comprehensive atlas of gene expression in mouse development. Gene expression levels from 198 tissue samples was measured using 202 Serial Analysis of Gene Expression (SAGE). Emphasis was on mouse development, samples taken at different stages of mouse development.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.
The Sequence Read Archive stores the raw sequencing data from such sequencing platforms as the Roche 454 GS System, the Illumina Genome Analyzer, the Applied Biosystems SOLiD System, the Helicos Heliscope, and the Complete Genomics. It archives the sequencing data associated with RNA-Seq, ChIP-Seq, Genomic and Transcriptomic assemblies, and 16S ribosomal RNA data.
The Protein database is a collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB. Protein sequences are the fundamental determinants of biological structure and function.
The NCBI Nucleotide database collects sequences from such sources as GenBank, RefSeq, TPA, and PDB. Sequences collected relate to genome, gene, and transcript sequence data, and provide a foundation for research related to the biomedical field.
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are either submitted directly to ArrayExpress and curated by a team of specialist biological curators, or are imported systematically from the NCBI Gene Expression Omnibus database on a weekly basis. Data is collected to MIAME and MINSEQE standards.
!!!Sprry.we are no longer in operation!!! The Beta Cell Biology Consortium (BCBC) was a team science initiative that was established by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). It was initially funded in 2001 (RFA DK-01-014), and competitively continued both in 2005 (RFAs DK-01-17, DK-01-18) and in 2009 (RFA DK-09-011). Funding for the BCBC came to an end on August 1, 2015, and with it so did our ability to maintain active websites.!!! One of the many goals of the BCBC was to develop and maintain databases of useful research resources. A total of 813 different scientific resources were generated and submitted by BCBC investigators over the 14 years it existed. Information pertaining to 495 selected resources, judged to be the most scientifically-useful, has been converted into a static catalog, as shown below. In addition, the metadata for these 495 resources have been transferred to dkNET in the form of RDF descriptors, and all genomics data have been deposited to either ArrayExpress or GEO. Please direct questions or comments to the NIDDK Division of Diabetes, Endocrinology & Metabolic Diseases (DEM).