Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
Country
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The Database of Genomic Variants archive provides curated archiving and distribution of publicly available genomic structural variants. Direct submissions are accepted as well as published data. The DGVa is the primary supplier of data to the Database of Genomic Variants (DGV) (hosted by The Centre for Applied Genomics in Toronto, Canada).
The HUGO Gene Nomenclature Committee (HGNC) assigned unique gene symbols and names to over 35,000 human loci, of which around 19,000 are protein coding. This curated online repository of HGNC-approved gene nomenclature and associated resources includes links to genomic, proteomic and phenotypic information, as well as dedicated gene family pages.
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
IntEnz contains the recommendation of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalyzed reactions. Users can browse by enzyme classification or use advanced search options to search enzymes by class, subclass and sub-subclass information.
EBI's CSA contains data documenting enzyme active sites and catalytic residues in enzymes of 3D structure. Entries in CSA may be original hand-annotated entries from primary literature or homologous entries found by PSI-BLAST alignment.
Content type(s)
!! see caMOD Retirement Announcement https://wiki.nci.nih.gov/display/caMOD/caMOD+Retirement+Announcement !! Query the Cancer Models database for models submitted by fellow researchers. Retrieve information about the making of models, their genetic description, histopathology, derived cell lines, associated images, carcinogenic agents, and therapeutic trials. Links to associated publications and other resources are provided.
Genome track alignments using GBrowse on this site are featured with: (1) Annotated and predicted genes and transcripts; (2) QTL / SNP Association tracks; (3) OMIA genes; (4) Various SNP Chip tracks; (5) Other mapping fetures or elements that are available.
TreeGenes is a genomic, phenotypic, and environmental data resource for forest tree species. The TreeGenes database and Dendrome project provide custom informatics tools to manage the flood of information.The database contains several curated modules that support the storage of data and provide the foundation for web-based searches and visualization tools. GMOD GUI tools such as CMAP for genetic maps and GBrowse for genome and transcriptome assemblies are implemented here. A sample tracking system, known as the Forest Tree Genetic Stock Center, sits at the forefront of most large-scale projects. Barcode identifiers assigned to the trees during sample collection are maintained in the database to identify an individual through DNA extraction, resequencing, genotyping and phenotyping. DiversiTree, a user-friendly desktop-style interface, queries the TreeGenes database and is designed for bulk retrieval of resequencing data. CartograTree combines geo-referenced individuals with relevant ecological and trait databases in a user-friendly map-based interface. ---- The Conifer Genome Network (CGN) is a virtual nexus for researchers working in conifer genomics. The CGN web site is maintained by the Dendrome Project at the University of California, Davis.
The UCSD Signaling Gateway Molecule Pages provide essential information on over thousands of proteins involved in cellular signaling. Each Molecule Page contains regularly updated information derived from public data sources as well as sequence analysis, references and links to other databases.
EMDataBank is a global portal for deposition and retrieval of cryo electron microscopy (3DEM) density maps, atomic models and associated metadata. It is a joint effort among investigators of the Protein Databank in Europe (PDBe) at the European Bioinformatics Institute, the Research Collaboratory for Structural Bioinformatics (RCSB) at Rutgers, and the National Center for Macromolecular Imaging (NCMI) at Baylor College of Medicine.
Database of mass spectra of known, unknown and provisionally identified substances. MassBank is the first public repository of mass spectral data for sharing them among scientific research community. MassBank data are useful for the chemical identification and structure elucidation of chemical compounds detected by mass spectrometry.
The Epigenomics database provides genomics maps of stable and reprogrammable nuclear changes that control gene expression and influence health. Users can browse current epigenomic experiments as well as search, compare and browse samples from multiple biological sources in gene-specific contexts. Many epigenomes contain modifications with histone marks, DNA methylation and chromatin structure activity. NCBI Epigenomics database contains datasets from the NIH Roadmap Epigenomics Project.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
Country
Stemformatics is a collaboration between the stem cell and bioinformatics community. We were motivated by the plethora of exciting cell models in the public and private domains, and the realisation that for many biologists these were mostly inaccessible. We wanted a fast way to find and visualise interesting genes in these exemplar stem cell datasets. We'd like you to explore. You'll find data from leading stem cell laboratories in a format that is easy to search, easy to visualise and easy to export.
TPA is a database that contains sequences built from the existing primary sequence data in GenBank. TPA records are retrieved through the Nucleotide Database and feature information on the sequence, how it was cataloged, and proper way to cite the sequence information.
The NCBI Nucleotide database collects sequences from such sources as GenBank, RefSeq, TPA, and PDB. Sequences collected relate to genome, gene, and transcript sequence data, and provide a foundation for research related to the biomedical field.
InterPro collects information about protein sequence analysis and classification, providing access to a database of predictive protein signatures used for the classification and automatic annotation of proteins and genomes. Sequences in InterPro are classified at superfamily, family, and subfamily. InterPro predicts the occurrence of functional domains, repeats, and important sites, and adds in-depth annotation such as GO terms to the protein signatures.