Reset all


Content Types


AID systems


Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
The Autism Chromosome Rearrangement Database is a collection of hand curated breakpoints and other genomic features, related to autism, taken from publicly available literature: databases and unpublished data. The database is continuously updated with information from in-house experimental data as well as data from published research studies.
The aim of FlyReactome, based in the Department of Genetics, University of Cambridge, is to develop a curated repository for Drosophila melanogaster pathways and reactions. The information in this database is authored by biological researchers with expertise in their fields, maintained by the FlyReactome staff.
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
Probe database provides a public registry of nucleic acid reagents as well as information on reagent distributors, sequence similarities and probe effectiveness. Database users have access to applications of gene expression, gene silencing and mapping, as well as reagent variation analysis and projects based on probe-generated data. The Probe database is constantly updated.
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
TBDatabase (Tuberculosis Database) provides resources and tools from the Stanford Microarray Database and the Broad Institute consisting of gene expression, genomic, and protein data. Data is browsable by attribute and searchable via BLAST.
The Cystic Fibrosis Mutation Database (CFTR1) was initiated by the Cystic Fibrosis Genetic Analysis Consortium in 1989 to increase and facilitate communications among CF researchers, and is maintained by the Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. The specific aim of the database is to provide up to date information about individual mutations in the CFTR gene. In a major upgrade in 2010, all known CFTR mutations and sequence variants have been converted to the standard nomenclature recommended by the Human Genome Variation Society.
The CASRdb site is dedicated to providing information on published mutations and polymorphisms of the calcium-sensing receptor (CASR).
Complete Genomics provides free public access to a variety of whole human genome data sets generated from Complete Genomics’ sequencing service. The research community can explore and familiarize themselves with the quality of these data sets, review the data formats provided from our sequencing service, and augment their own research with additional summaries of genomic variation across a panel of diverse individuals. The quality of these data sets is representative of what a customer can expect to receive for their own samples. This public genome repository comprises genome results from both our Standard Sequencing Service (69 standard, non-diseased samples) and the Cancer Sequencing Service (two matched tumor and normal sample pairs). In March 2013 Complete Genomics was acquired by BGI-Shenzhen , the world’s largest genomics services company. BGI is a company headquartered in Shenzhen, China that provides comprehensive sequencing and bioinformatics services for commercial science, medical, agricultural and environmental applications. Complete Genomics is now focused on building a new generation of high-throughput sequencing technology and developing new and exciting research, clinical and consumer applications.
Content type(s)
The Centre for Applied Genomics hosts a variety of databases related to ongoing supported projects. Curation of these databases is performed in-house by TCAG Bioinformatics staff. The Autism Chromosome Rearrangement Database, The Cystic Fibrosis Mutation Database, TThe Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database are included. Large Scale Genomics Research resources include, the Database of Genomic Variants, The Chromosome 7 Annotation Project, The Human Genome Segmental Duplication Database, and the Non-Human Segmental Duplication Database
virus mentha archives evidence about viral interactions collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. virus mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". virus mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. virus mentha offers direct access to viral families such as: Orthomyxoviridae, Orthoretrovirinae and Herpesviridae plus, it offers the unique possibility of searching by host organism. The website and the graphical application are designed to make the data stored in virus mentha accessible and analysable to all users.virus mentha superseeds VirusMINT. The Source databases are: MINT, DIP, IntAct, MatrixDB, BioGRID.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
BioGPS is a gene portal built with two guiding principles in mind -- customizability and extensibility. It is a complete resource for learning about gene and protein function. A free extensible and customizable gene annotation portal, a complete resource for learning about gene and protein function.
DOMINO is an open-access database comprising more than 3900 annotated experiments describing interactions mediated by protein-interaction domains. The curation effort aims at covering the interactions mediated by the following domains (SH3, SH2, 14-3-3, PDZ, PTB, WW, EVH, VHS, FHA, EH, FF, BRCT, Bromo, Chromo, GYF). The interactions deposited in DOMINO are annotated according to the PSI MI standard and can be easily analyzed in the context of the global protein interaction network as downloaded from major interaction databases like MINT, INTACT, DIP, MIPS/MPACT. DOMINO can be searched with a versatile search tool and the interaction networks can be visualized with a convenient graphic display applet that explicitly identifies the domains/sites involved in the interactions.
The Yeast Resource Center provides access to data about mass spectrometry, yeast two-hybrid arrays, deconvolution florescence microscopy, protein structure prediction and computational biology. These services are provided to further the goal of a complete understanding of the chemical interactions required for the maintenance and faithful reproduction of a living cell. The observation that the fundamental biological processes of yeast are conserved among all eukaryotes ensures that this knowledge will shape and advance our understanding of living systems.
INTEGRALL is a web-based platform dedicated to compile information on integrons and designed to organize all the data available for these genetic structures. INTEGRALL provides a public genetic repository for sequence data and nomenclature and offers to scientists an easy and interactive access to integron's DNA sequences, their molecular arrangements as well as their genetic contexts.
The Pseudomonas Genome Database collaborates with an international panel of expert Pseudomonas researchers to provide high quality updates to the PAO1 genome annotation and make cutting edge genome analysis data available.
The miRBase database is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download. The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results.
Androgen Receptor Gene Mutations Database is for all who are interested in mutations of the Androgen Receptor Gene. In light of the difficulty in getting new AR mutations published the curator will now accept new mutations that have not been published, provided that it is from a reputable research or clinical laboratory. The curator also strongly suggests that where possible, particularly in the case of new unique mutations that an attempt be made to at least confirm the pathogenicity of the putatative mutation, by showing that the mutation when transfected into a suitable expression system produces a mutant androgen receptor protein.