Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 53 result(s)
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
VectorBase provides data on arthropod vectors of human pathogens. Sequence data, gene expression data, images, population data, and insecticide resistance data for arthropod vectors are available for download. VectorBase also offers genome browser, gene expression and microarray repository, and BLAST searches for all VectorBase genomes. VectorBase Genomes include Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus, Rhodnius prolixus. VectorBase is one the Bioinformatics Resource Centers (BRC) projects which is funded by National Institute of Allergy and Infectious Diseases (NAID).
Clone DB contains information about genomic clones and cDNA and cell-based libraries for eukaryotic organisms. The database integrates this information with sequence data, map positions, and distributor information. At this time, Clone DB contains records for genomic clones and libraries, the collection of MICER mouse gene targeting clones and cell-based gene trap and gene targeting libraries from the International Knockout Mouse Consortium, Lexicon and the International Gene Trap Consortium. A planned expansion for Clone DB will add records for additional gene targeting and gene trap clones, as well as cDNA clones.
Country
The taxonomically broad EST database TBestDB serves as a repository for EST data from a wide range of eukaryotes, many of which have previously not been thoroughly investigated. Most of the data contained in TBestDB has been generated by the labs of the Protist EST Program located in six universities across Canada. PEP is a large interdisciplinaryresearch project, involving six Canadian universities. PEP aims at the exploration of the diversity of eukaryotic genomes in a systematic, comprehensive and integrated way. The focus is on unicellular microbial eukaryotes, known as protists. Protistan eukaryotes comprise more than a dozen major lineages that, together, encompass more evolutionary, ecological and probably biochemical diversity than the multicellular kingdoms of animals, plants and fungi combined. PEP is a unique endeavor in that it is the first phylogenetically-broad genomic investigation of protists.
Country
The Human Genetic Variation Database (HGVD) aims to provide a central resource to archive and display Japanese genetic variation and association between the variation and transcription level of genes. The database currently contains genetic variations determined by exome sequencing of 1,208 individuals and genotyping data of common variations obtained from a cohort of 3,248 individuals.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The Database of Genomic Variants archive provides curated archiving and distribution of publicly available genomic structural variants. Direct submissions are accepted as well as published data. The DGVa is the primary supplier of data to the Database of Genomic Variants (DGV) (hosted by The Centre for Applied Genomics in Toronto, Canada).
The HUGO Gene Nomenclature Committee (HGNC) assigned unique gene symbols and names to over 35,000 human loci, of which around 19,000 are protein coding. This curated online repository of HGNC-approved gene nomenclature and associated resources includes links to genomic, proteomic and phenotypic information, as well as dedicated gene family pages.
EMPIAR, the Electron Microscopy Public Image Archive, is a public resource for raw, 2D electron microscopy images. Here, you can browse, upload, download and reprocess the thousands of raw, 2D images used to build a 3D structure. The purpose of EMPIAR is to provide an easy access to the state-of-the-art raw data to facilitate methods development and validation, which will lead to better 3D structures. It complements the Electron Microscopy Data Bank (EMDB), where 3D images are stored, and uses the fault-tolerant Aspera platform for data transfers
This resource allows users to search for and compare influenza virus genomes and gene sequences taken from GenBank. It also provides a virus sequence annotation tool and links to other influenza resources: NIAID project, JCVI Flu, Influenza research database, CDC Flu, Vaccine Selection and WHO Flu.
mentha archives evidence collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. The aggregated data forms an interactome which includes many organisms. mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. mentha offers eight interactomes (Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli K12, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae) plus a global network that comprises every organism, including those not mentioned. The website and the graphical application are designed to make the data stored in mentha accessible and analysable to all users. Source databases are: MINT, IntAct, DIP, MatrixDB and BioGRID.
Probe database provides a public registry of nucleic acid reagents as well as information on reagent distributors, sequence similarities and probe effectiveness. Database users have access to applications of gene expression, gene silencing and mapping, as well as reagent variation analysis and projects based on probe-generated data. The Probe database is constantly updated.
The NCBI database of Genotypes and Phenotypes archives and distributes the results of studies that have investigated the interaction of genotype and phenotype, including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits. The database provides summaries of studies, the contents of measured variables, and original study document text. dbGaP provides two types of access for users, open and controlled. Through the controlled access, users may access individual-level data such as phenotypic data tables and genotypes.
Country
HIstome: The Histone Infobase is a database of human histones, their post-translational modifications and modifying enzymes. HIstome is a combined effort of researchers from two institutions, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai and Center of Excellence in Epigenetics, Indian Institute of Science Education and Research (IISER), Pune.
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
The Drosophila Synthetic Population Resource (DSPR) consists of a new panel of over 1700 recombinant inbred lines (RILs) of Drosophila melanogaster, derived from two highly recombined synthetic populations, each created by intercrossing a different set of 8 inbred founder lines (with one founder line common to both populations). Complete genome sequence data for the founder lines are available, and in addition, there is a high resolution genetic map for each RIL. The DSPR has been developed as a community resource for high-resolution QTL mapping and is intended to be used widely by the Drosophila community.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
The HomoloGene database provides a system for the automated detection of homologs among annotated genes of genomes across multiple species. These homologs are fully documented and organized by homology group. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences.
Genome track alignments using GBrowse on this site are featured with: (1) Annotated and predicted genes and transcripts; (2) QTL / SNP Association tracks; (3) OMIA genes; (4) Various SNP Chip tracks; (5) Other mapping fetures or elements that are available.
The UCSD Signaling Gateway Molecule Pages provide essential information on over thousands of proteins involved in cellular signaling. Each Molecule Page contains regularly updated information derived from public data sources as well as sequence analysis, references and links to other databases.
!! OFFLINE !! A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.