Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
The IMEx consortium is an international collaboration between a group of major public interaction data providers who have agreed to share curation effort and develop and work to a single set of curation rules when capturing data from both directly deposited interaction data or from publications in peer-reviewed journals, capture full details of an interaction in a “deep” curation model, perform a complete curation of all protein-protein interactions experimentally demonstrated within a publication, make these interaction available in a single search interface on a common website, provide the data in standards compliant download formats, make all IMEx records freely accessible under the Creative Commons Attribution License
STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources: - Genomic Context - High-throughput Experiments - (Conserved) Coexpression - Previous Knowledge STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable.
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.