Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 245 result(s)
The CancerData site is an effort of the Medical Informatics and Knowledge Engineering team (MIKE for short) of Maastro Clinic, Maastricht, The Netherlands. Our activities in the field of medical image analysis and data modelling are visible in a number of projects we are running. CancerData is offering several datasets. They are grouped in collections and can be public or private. You can search for public datasets in the NBIA (National Biomedical Imaging Archive) image archives without logging in.
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
VectorBase provides data on arthropod vectors of human pathogens. Sequence data, gene expression data, images, population data, and insecticide resistance data for arthropod vectors are available for download. VectorBase also offers genome browser, gene expression and microarray repository, and BLAST searches for all VectorBase genomes. VectorBase Genomes include Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Ixodes scapularis, Pediculus humanus, Rhodnius prolixus. VectorBase is one the Bioinformatics Resource Centers (BRC) projects which is funded by National Institute of Allergy and Infectious Diseases (NAID).
Clone DB contains information about genomic clones and cDNA and cell-based libraries for eukaryotic organisms. The database integrates this information with sequence data, map positions, and distributor information. At this time, Clone DB contains records for genomic clones and libraries, the collection of MICER mouse gene targeting clones and cell-based gene trap and gene targeting libraries from the International Knockout Mouse Consortium, Lexicon and the International Gene Trap Consortium. A planned expansion for Clone DB will add records for additional gene targeting and gene trap clones, as well as cDNA clones.
Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
BindingDB is a public, web-accessible database of measured binding affinities, focusing chiefly on the interactions of proteins considered to be candidate drug-targets with ligands that are small, drug-like molecules. BindingDB supports medicinal chemistry and drug discovery via literature awareness and development of structure-activity relations (SAR and QSAR); validation of computational chemistry and molecular modeling approaches such as docking, scoring and free energy methods; chemical biology and chemical genomics; and basic studies of the physical chemistry of molecular recognition. BindingDB also includes a small collection of host-guest binding data of interest to chemists studying supramolecular systems. The data collection derives from a variety of measurement techniques, including enzyme inhibition and kinetics, isothermal titration calorimetry, NMR, and radioligand and competition assays. BindingDB includes data extracted from the literature by the BindingDB project, selected PubChem confirmatory BioAssays, and ChEMBL entries for which a well defined protein target ("TARGET_TYPE='PROTEIN'") is provided. Data extracted by BindingDB typically includes more details regarding experimental conditions, etc
The Autism Chromosome Rearrangement Database is a collection of hand curated breakpoints and other genomic features, related to autism, taken from publicly available literature: databases and unpublished data. The database is continuously updated with information from in-house experimental data as well as data from published research studies.
eCrystals - Southampton is the archive for Crystal Structures generated by the Southampton Chemical Crystallography Group and the EPSRC UK National Crystallography Service.
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is
RDP provides quality-controlled, aligned and annotated Bacterial and Archaeal 16S rRNA sequences, and Fungal 28S rRNA sequences, and a suite of analysis tools to the scientific community.
caNanoLab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanoLab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical and in vitro assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources: - Genomic Context - High-throughput Experiments - (Conserved) Coexpression - Previous Knowledge STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable.
CBS offers Comprehensive public databases of DNA- and protein sequences, macromolecular structure, g ene and protein expression levels, pathway organization and cell signalling, have been established to optimise scientific exploitation of the explosion of data within biology. Unlike many other groups in the field of biomolecular informatics, Center for Biological Sequence Analysis directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. Among contemporary bioinformatics concerns are reliable computational interpretation of a wide range of experimental data, and the detailed understanding of the molecular apparatus behind cellular mechanisms of sequence information. By exploiting available experimental data and evidence in the design of algorithms, sequence correlations and other features of biological significance can be inferred. In addition to the computational research the center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. In the last decade, the Center for Biological Sequence Analysis has produced a large number of computational methods, which are offered to others via WWW servers.
ToxoDB is a genome database for the genus Toxoplasma, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including toxoplasmosis.
The DOE Data Explorer (DDE) is an information tool to help you locate DOE's collections of data and non-text information and, at the same time, retrieve individual datasets within some of those collections. It includes collection citations prepared by the Office of Scientific and Technical Information, as well as citations for individual datasets submitted from DOE Data Centers and other organizations.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.