Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 45 result(s)
The CancerData site is an effort of the Medical Informatics and Knowledge Engineering team (MIKE for short) of Maastro Clinic, Maastricht, The Netherlands. Our activities in the field of medical image analysis and data modelling are visible in a number of projects we are running. CancerData is offering several datasets. They are grouped in collections and can be public or private. You can search for public datasets in the NBIA (National Biomedical Imaging Archive) image archives without logging in.
Country
The project brings together national key players providing environmentally related biological data and services to develop the ‘German Federation for Biological Data' (GFBio). The overall goal is to provide a sustainable, service oriented, national data infrastructure facilitating data sharing and stimulating data intensive science in the fields of biological and environmental research.
The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of functional information on proteins, with accurate, consistent and rich annotation. In addition to capturing the core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and clear indications of the quality of annotation in the form of evidence attribution of experimental and computational data. The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. The UniProt databases are the UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). The UniProt Metagenomic and Environmental Sequences (UniMES) database is a repository specifically developed for metagenomic and environmental data. The UniProt Knowledgebase,is an expertly and richly curated protein database, consisting of two sections called UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Intrepid Bioinformatics serves as a community for genetic researchers and scientific programmers who need to achieve meaningful use of their genetic research data – but can’t spend tremendous amounts of time or money in the process. The Intrepid Bioinformatics system automates time consuming manual processes, shortens workflow, and eliminates the threat of lost data in a faster, cheaper, and better environment than existing solutions. The system also provides the functionality and community features needed to analyze the large volumes of Next Generation Sequencing and Single Nucleotide Polymorphism data, which is generated for a wide range of purposes from disease tracking and animal breeding to medical diagnosis and treatment.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
OMIM is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. OMIM is authored and edited at the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada Hamosh. Its official home is omim.org.
IntAct provides a freely available, open source database system and analysis tools for molecular interaction data. All interactions are derived from literature curation or direct user submissions and are freely available.
The DOE Data Explorer (DDE) is an information tool to help you locate DOE's collections of data and non-text information and, at the same time, retrieve individual datasets within some of those collections. It includes collection citations prepared by the Office of Scientific and Technical Information, as well as citations for individual datasets submitted from DOE Data Centers and other organizations.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
Virtual Fly Brain (VFB) - an interactive tool for neurobiologists to explore the detailed neuroanatomy, neuron connectivity and gene expression of the adult Drosophila melanogaster brain.
Country
The server ESTHER (ESTerases and alpha/beta-Hydrolase Enzymes and Relatives) is dedicated to the analysis of proteins or protein domains belonging to the superfamily of alpha/beta-hydrolases, exemplified by the cholinesterases.
Country
e!DAL stands for electronic Data Archive Library. It is a lightweight open source software software framework for publishing and sharing research data. e!DAL was developed based on experiences coming from decades of research data management and has grown towards being a general data archiving and publication infrastructure [doi:10.1186/1471-2105-15-214]. First research data repository is "Plant Genomics and Phenomics Research Data Repository".
GENCODE is a scientific project in genome research and part of the ENCODE (ENCyclopedia Of DNA Elements) scale-up project. The GENCODE consortium was initially formed as part of the pilot phase of the ENCODE project to identify and map all protein-coding genes within the ENCODE regions (approx. 1% of Human genome). Given the initial success of the project, GENCODE now aims to build an “Encyclopedia of genes and genes variants” by identifying all gene features in the human and mouse genome using a combination of computational analysis, manual annotation, and experimental validation, and annotating all evidence-based gene features in the entire human genome at a high accuracy.
Content type(s)
The IDR makes datasets that have never previously been accessible publicly available, allowing the community to search, view, mine and even process and analyze large, complex, multidimensional life sciences image data. Sharing data promotes the validation of experimental methods and scientific conclusions, the comparison with new data obtained by the global scientific community, and enables data reuse by developers of new analysis and processing tools.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
The modENCODE Project, Model Organism ENCyclopedia Of DNA Elements, was initiated by the funding of applications received in response to Requests for Applications (RFAs) HG-06-006, entitled Identification of All Functional Elements in Selected Model Organism Genomes and HG-06-007, entitled A Data Coordination Center for the Model Organism ENCODE Project (modENCODE). The modENCODE Project is being run as an open consortium and welcomes any investigator willing to abide by the criteria for participation that have been established for the project. Both computational and experimental approaches are being applied by modENCODE investigators to study the genomes of D. melanogaster and C. elegans. An added benefit of studying functional elements in model organisms is the ability to biologically validate the elements discovered using methods that cannot be applied in humans. The comprehensive dataset that is expected to result from the modENCODE Project will provide important insights into the biology of D. melanogaster and C. elegans as well as other organisms, including humans.
OpenWorm aims to build the first comprehensive computational model of the Caenorhabditis elegans (C. elegans), a microscopic roundworm. With only a thousand cells, it solves basic problems such as feeding, mate-finding and predator avoidance. Despite being extremely well studied in biology, this organism still eludes a deep, principled understanding of its biology. We are using a bottom-up approach, aimed at observing the worm behaviour emerge from a simulation of data derived from scientific experiments carried out over the past decade. To do so we are incorporating the data available in the scientific community into software models. We are engineering Geppetto and Sibernetic, open-source simulation platforms, to be able to run these different models in concert. We are also forging new collaborations with universities and research institutes to collect data that fill in the gaps All the code we produce in the OpenWorm project is Open Source and available on GitHub.