Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 35 result(s)
The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is a team of researchers, data specialists and computer system developers who are supporting the development of a data management system to store scientific data generated by Gulf of Mexico researchers. The Master Research Agreement between BP and the Gulf of Mexico Alliance that established the Gulf of Mexico Research Initiative (GoMRI) included provisions that all data collected or generated through the agreement must be made available to the public. The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is the vehicle through which GoMRI is fulfilling this requirement. The mission of GRIIDC is to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem.
GroupLens is a research lab in the Department of Computer Science and Engineering at the University of Minnesota, Twin Cities specializing in recommender systems, online communities, mobile and ubiquitous technologies, digital libraries, and local geographic information systems.
The National Science Digital Library provides high quality online educational resources for teaching and learning, with current emphasis on the sciences, technology, engineering, and mathematics (STEM) disciplines—both formal and informal, institutional and individual, in local, state, national, and international educational settings. The NSDL collection contains structured descriptive information (metadata) about web-based educational resources held on other sites by their providers. These providers have contribute this metadata to NSDL for organized search and open access to educational resources via this website and its services.
The Research Collection is ETH Zurich's publication platform. It unites the functions of a university bibliography, an open access repository and a research data repository within one platform. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit research data from all domains. They can publish data as a standalone publication, publish it as supplementary material for an article, dissertation or another text, share it with colleagues or a research group, or deposit it for archiving purposes. Research-data-specific features include flexible access rights settings, DOI registration and a DOI preview workflow, content previews for zip- and tar-containers, as well as download statistics and altmetrics for published data. All data uploaded to the Research Collection are also transferred to the ETH Data Archive, ETH Zurich’s long-term archive.
The Alternative Fuels Data Center (AFDC) is a comprehensive clearinghouse of information about advanced transportation technologies. The AFDC offers transportation decision makers unbiased information, data, and tools related to the deployment of alternative fuels and advanced vehicles. The AFDC launched in 1991 in response to the Alternative Motor Fuels Act of 1988 and the Clean Air Act Amendments of 1990. It originally served as a repository for alternative fuel performance data. The AFDC has since evolved to offer a broad array of information resources that support efforts to reduce petroleum use in transportation. The AFDC serves Clean Cities stakeholders, fleets regulated by the Energy Policy Act, businesses, policymakers, government agencies, and the general public.
Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into Microsoft Office and Excel. The SNAP library is being actively developed since 2004 and is organically growing as a result of our research pursuits in analysis of large social and information networks. Largest network we analyzed so far using the library was the Microsoft Instant Messenger network from 2006 with 240 million nodes and 1.3 billion edges. The datasets available on the website were mostly collected (scraped) for the purposes of our research. The website was launched in July 2009.
The UWA Research Repository contains research publications, research datasets and theses created by researchers and postgraduates affiliated with UWA. It is managed by the University Library and provides access to research datasets held at the University of Western Australia. The information about each dataset has been provided by UWA research groups. Dataset metadata is harvested into Research Data Australia (RDA: Language: The user interface language of the research data repository.
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. A unique feature of Edmond is the dedicated metadata management, which supports a non-restrictive metadata schema definition, as simple as you like or as complex as your parameters require. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
In order to meet the needs of research data management for Peking University. The PKU library cooperate with the NSFC-PKU data center for management science, PKU science and research department, PKU social sciences department to jointly launch the Peking University Open Research Data Platform. PKU Open research data provides preservation, management and distribution services for research data. It encourage data owner to share data and data users to reuse data.
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.
ETH Data Archive is ETH Zurich's long-term preservation solution for digital information such as research data, documents or images. It serves as the backbone of data curation and for most of its content, it is a “dark archive” without public access. In this capacity, the ETH Data Archive also archives the content of ETH Zurich’s Research Collection which is the primary repository for members of the university and the first point of contact for publication of data at ETH Zurich. All data that was produced in the context of research at the ETH Zurich, can be published and archived in the Research Collection. In the following cases, a direct data upload into the ETH Data Archive though, has to be considered: - Upload and registration of software code according to ETH transfer’s requirements for Software Disclosure. - A substantial number of files, have to be regularly submitted for long-term archiving and/or publishing and browser-based upload is not an option: the ETH Data Archive may offer automated data and metadata transfers from source applications (e.g. from a LIMS) via API. - Files for a project on a local computer have to be collected and metadata has to be added before uploading the data to the ETH Data Archive: -- we provide you with the local file editor docuteam packer. Docuteam packer allows to structure, describe, and organise data for an upload into the ETH Data Archive and the depositor decides when submission is due.
KONECT (the Koblenz Network Collection) is a project to collect large network datasets of all types in order to perform research in network science and related fields, collected by the Institute of Web Science and Technologies at the University of Koblenz–Landau. KONECT contains over a hundred network datasets of various types, including directed, undirected, bipartite, weighted, unweighted, signed and rating networks. The networks of KONECT are collected from many diverse areas such as social networks, hyperlink networks, authorship networks, physical networks, interaction networks and communication networks. The KONECT project has developed network analysis tools which are used to compute network statistics, to draw plots and to implement various link prediction algorithms. The result of these analyses are presented on these pages. Whenever we are allowed to do so, we provide a download of the networks.
The figshare service for The Open University was launched in 2016 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing metadata alongside datasets. Additionally, every uploaded item receives a Digital Object Identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.
Cell phones have become an important platform for the understanding of social dynamics and influence, because of their pervasiveness, sensing capabilities, and computational power. Many applications have emerged in recent years in mobile health, mobile banking, location based services, media democracy, and social movements. With these new capabilities, we can potentially be able to identify exact points and times of infection for diseases, determine who most influences us to gain weight or become healthier, know exactly how information flows among employees and productivity emerges in our work spaces, and understand how rumors spread. In an attempt to address these challenges, we release several mobile data sets here in "Reality Commons" that contain the dynamics of several communities of about 100 people each. We invite researchers to propose and submit their own applications of the data to demonstrate the scientific and business values of these data sets, suggest how to meaningfully extend these experiments to larger populations, and develop the math that fits agent-based models or systems dynamics models to larger populations. These data sets were collected with tools developed in the MIT Human Dynamics Lab and are now available as open source projects or at cost.
Content type(s)
A machine learning data repository with interactive visual analytic techniques. This project is the first to combine the notion of a data repository with real-time visual analytics for interactive data mining and exploratory analysis on the web. State-of-the-art statistical techniques are combined with real-time data visualization giving the ability for researchers to seamlessly find, explore, understand, and discover key insights in a large number of public donated data sets. This large comprehensive collection of data is useful for making significant research findings as well as benchmark data sets for a wide variety of applications and domains and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have built a multi-level interactive visual analytics engine that allows users to visualize and interactively explore the data in a free-flowing manner.
The Open Science Framework (OSF) is part network of research materials, part version control system, and part collaboration software. The purpose of the software is to support the scientist's workflow and help increase the alignment between scientific values and scientific practices. Document and archive studies. Move the organization and management of study materials from the desktop into the cloud. Labs can organize, share, and archive study materials among team members. Web-based project management reduces the likelihood of losing study materials due to computer malfunction, changing personnel, or just forgetting where you put the damn thing. Share and find materials. With a click, make study materials public so that other researchers can find, use and cite them. Find materials by other researchers to avoid reinventing something that already exists. Detail individual contribution. Assign citable, contributor credit to any research material - tools, analysis scripts, methods, measures, data. Increase transparency. Make as much of the scientific workflow public as desired - as it is developed or after publication of reports. Find public projects here. Registration. Registering materials can certify what was done in advance of data analysis, or confirm the exact state of the project at important points of the lifecycle such as manuscript submission or at the onset of data collection. Discover public registrations here. Manage scientific workflow. A structured, flexible system can provide efficiency gain to workflow and clarity to project objectives, as pictured.
Network Repository is the first interactive data repository for graph and network data. It hosts graph and network datasets, containing hundreds of real-world networks and benchmark datasets. Unlike other data repositories, Network Repository provides interactive analysis and visualization capabilities to allow researchers to explore, compare, and investigate graph data in real-time on the web.
We are developing an open, online platform to provide a seamless access to cloud computing infrastructure and brain data and data derivatives. This platform is meant to reach out beyond neuroscience, allowing also computer scientists, statisticians and engineers interested in brain data to use the data to develop and publish their methods. Brain Life is a project under active development. We currently offer several cloud computing services – also called Brain Life Applications. Sixty-six collaborators from global scientific communities contribute to the project by providing data, applications, technology and products to advance understanding the human brain.
The Informatics Research Data Repository is a Japanese data repository that collects data on disciplines within informatics. Such sub-categories are things like consumerism and information diffusion. The primary data within these data sets is from experiments run by IDR on how one group is linked to another.