Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 17 result(s)
Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into Microsoft Office and Excel. The SNAP library is being actively developed since 2004 and is organically growing as a result of our research pursuits in analysis of large social and information networks. Largest network we analyzed so far using the library was the Microsoft Instant Messenger network from 2006 with 240 million nodes and 1.3 billion edges. The datasets available on the website were mostly collected (scraped) for the purposes of our research. The website was launched in July 2009.
The National Science Digital Library provides high quality online educational resources for teaching and learning, with current emphasis on the sciences, technology, engineering, and mathematics (STEM) disciplines—both formal and informal, institutional and individual, in local, state, national, and international educational settings. The NSDL collection contains structured descriptive information (metadata) about web-based educational resources held on other sites by their providers. These providers have contribute this metadata to NSDL for organized search and open access to educational resources via this website and its services.
KONECT (the Koblenz Network Collection) is a project to collect large network datasets of all types in order to perform research in network science and related fields, collected by the Institute of Web Science and Technologies at the University of Koblenz–Landau. KONECT contains over a hundred network datasets of various types, including directed, undirected, bipartite, weighted, unweighted, signed and rating networks. The networks of KONECT are collected from many diverse areas such as social networks, hyperlink networks, authorship networks, physical networks, interaction networks and communication networks. The KONECT project has developed network analysis tools which are used to compute network statistics, to draw plots and to implement various link prediction algorithms. The result of these analyses are presented on these pages. Whenever we are allowed to do so, we provide a download of the networks.
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.
The figshare service for The Open University was launched in 2016 and allows researchers to store, share and publish research data. It helps the research data to be accessible by storing metadata alongside datasets. Additionally, every uploaded item receives a Digital Object Identifier (DOI), which allows the data to be citable and sustainable. If there are any ethical or copyright concerns about publishing a certain dataset, it is possible to publish the metadata associated with the dataset to help discoverability while sharing the data itself via a private channel through manual approval.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.
Social Computing Data Repository hosts data from a collection of many different social media sites, most of which have blogging capacity. Some of the prominent social media sites included in this repository are BlogCatalog, Twitter, MyBlogLog, Digg, StumbleUpon, del.icio.us, MySpace, LiveJournal, The Unofficial Apple Weblog (TUAW), Reddit, etc. The repository contains various facets of blog data including blog site metadata like, user defined tags, predefined categories, blog site description; blog post level metadata like, user defined tags, date and time of posting; blog posts; blog post mood (which is defined as the blogger's emotions when (s)he wrote the blog post); blogger name; blog post comments; and blogger social network.
Polish CLARIN node – CLARIN-PL Language Technology Centre – is being built at Wrocław University of Technology. The LTC is addressed to scholars in the humanities and social sciences. Registered users are granted free access to digital language resources and advanced tools to explore them. They can also archive and share their own language data (in written, spoken, video or multimodal form).
We are developing an open, online platform to provide a seamless access to cloud computing infrastructure and brain data and data derivatives. This platform is meant to reach out beyond neuroscience, allowing also computer scientists, statisticians and engineers interested in brain data to use the data to develop and publish their methods. Brain Life is a project under active development. We currently offer several cloud computing services – also called Brain Life Applications. Sixty-six collaborators from global scientific communities contribute to the project by providing data, applications, technology and products to advance understanding the human brain.
Country
The Informatics Research Data Repository is a Japanese data repository that collects data on disciplines within informatics. Such sub-categories are things like consumerism and information diffusion. The primary data within these data sets is from experiments run by IDR on how one group is linked to another.
RUresearch Data Portal is a subset of RUcore (Rutgers University Community Repository), provides a platform for Rutgers researchers to share their research data and supplementary resources with the global scholarly community. This data portal leverages all the capabilities of RUcore with additional tools and services specific to research data. It provides data in different clusters (research-genre) with excellent search facility; such as experimental data, multivariate data, discrete data, continuous data, time series data, etc. However it facilitates individual research portals that include the Video Mosaic Collaborative (VMC), an NSF-funded collection of mathematics education videos for Teaching and Research. Its' mission is to maintain the significant intellectual property of Rutgers University; thereby intended to provide open access and the greatest possible impact for digital data collections in a responsible manner to promote research and learning.