Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into Microsoft Office and Excel. The SNAP library is being actively developed since 2004 and is organically growing as a result of our research pursuits in analysis of large social and information networks. Largest network we analyzed so far using the library was the Microsoft Instant Messenger network from 2006 with 240 million nodes and 1.3 billion edges. The datasets available on the website were mostly collected (scraped) for the purposes of our research. The website was launched in July 2009.
KONECT (the Koblenz Network Collection) is a project to collect large network datasets of all types in order to perform research in network science and related fields, collected by the Institute of Web Science and Technologies at the University of Koblenz–Landau. KONECT contains over a hundred network datasets of various types, including directed, undirected, bipartite, weighted, unweighted, signed and rating networks. The networks of KONECT are collected from many diverse areas such as social networks, hyperlink networks, authorship networks, physical networks, interaction networks and communication networks. The KONECT project has developed network analysis tools which are used to compute network statistics, to draw plots and to implement various link prediction algorithms. The result of these analyses are presented on these pages. Whenever we are allowed to do so, we provide a download of the networks.
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.
The American National Election Studies (ANES) conducts national surveys and pilot studies and provides large, multifaceted datasets. Time Series Studies are conducted during years of national elections, with pre-election and post-election surveys conducted in presidential election years and post-election surveys conducted during congressional election years. Pilot Studies are normally conducted in years when there is no national election and are designed to test new, or to refine existing, instrumentation and study designs. Other Major Data Collections includes panel studies and other special studies.
Social Computing Data Repository hosts data from a collection of many different social media sites, most of which have blogging capacity. Some of the prominent social media sites included in this repository are BlogCatalog, Twitter, MyBlogLog, Digg, StumbleUpon, del.icio.us, MySpace, LiveJournal, The Unofficial Apple Weblog (TUAW), Reddit, etc. The repository contains various facets of blog data including blog site metadata like, user defined tags, predefined categories, blog site description; blog post level metadata like, user defined tags, date and time of posting; blog posts; blog post mood (which is defined as the blogger's emotions when (s)he wrote the blog post); blogger name; blog post comments; and blogger social network.
Sound and Vision has one of the largest audiovisual archives in Europe. The institute manages over 70 percent of the Dutch audiovisual heritage. The collection contains more than a million hours of television, radio, music and film from the beginning in 1898 until today. All programs of the Dutch public broadcasters come in digitally every day. Individuals and institutions entrust their collection to Sound and Vision as well. The institute ensures that the material is optimally preserved for (re)use. Broadcasters, producers and editors use the archive for the creation of new programs. The collection is also used to develop products and services for a wide audience, such as exhibitions, iPhone applications, DVD boxes and various websites. The collection of Sound and Vision contains the complete radio and television archives of the Dutch public broadcasters; films of virtually every leading Dutch documentary maker; newsreels; the national music depot; various audiovisual corporate collections; advertising, radio and video material of cultural and social organizations, of scientific institutes and of all kinds of educational institutions. There are also collections of images and articles from the history of Dutch broadcasting itself, like the elaborate collection of historical television sets.