Filter
Reset all

Subjects

Content Types

Countries

AID systems

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
The atomic line data used in this database are taken from Bob Kurucz' CD-ROM 23 of spectroscopic line calculations. The database contains all lines of the file "gfall.dat" with the following items for each line: Wavelength; loggf; element code; lower level: energy, J, configuration; upper level: energy, J, configuration; gamma r; gamma s; gamma w; reference code. CD-ROM 23 has all the atomic line data with good wavelengths in one large file and in one file for each species. The big file is also divided into 10 nm and 100 nm sections for convenience. Also given are hyperfine line lists for neutral Sc, V, Mn, and Co that were produced by splitting all the energy levels for which laboratory data are available (only a small fraction).
This is a compilation of approximately 923,000 allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.5 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition. No attempt has been made to include observed wavelengths. Most of the atomic energy level data have been taken from the Atomic Spectra Database provided by the National Institute of Standards and Technology (NIST).
A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z ≤ 100), at energies from 1 keV to 100 GeV.
The Innsbruck Dissociative Electron Attachment (DEA) DataBase node holds relative cross sections for dissociative electron attachment processes of the form: AB + e– –> A– + B, where AB is a molecule. It hence supports querying by various identifiers for molecules and atoms, such as chemical names, stoichiometric formulae, InChI (-keys) and CAS registry numbers. These identifiers are searched both in products and reactants of the processes. It then returns XSAMS files describing the processes found including numeric values for the relative cross sections of the processes. Alternatively, cross sections can be exported as plain ASCII files.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).
At the heart of the Plasma Data Exchange Project is LXcat (pronounced "elecscat"), an open-access website for collecting, displaying, and downloading electron and ion scattering cross sections, swarm parameters (mobility, diffusion coefficient, etc.), reaction rates, energy distribution functions, etc. and other data required for modeling low temperature plasmas. The available data bases have been contributed by members of the community and are indicated by the contributor's chosen title.