Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 46 result(s)
Country
PLMD (Protein Lysine Modifications Database) is an online data resource specifically designed for protein lysine modifications (PLMs). The PLMD 3.0 database was extended and adapted from CPLA 1.0 (Compendium of Protein Lysine Acetylation) database and CPLM 2.0 (Compendium of Protein Lysine Modifications) database
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
Country
GBIF is an international organisation that is working to make the world's biodiversity data accessible everywhere in the world. GBIF and its many partners work to mobilize the data, and to improve search mechanisms, data and metadata standards, web services, and the other components of an Internet-based information infrastructure for biodiversity. GBIF makes available data that are shared by hundreds of data publishers from around the world. These data are shared according to the GBIF Data Use Agreement, which includes the provision that users of any data accessed through or retrieved via the GBIF Portal will always give credit to the original data publishers.
Country
ArachnoServer is a manually curated database containing information on the sequence, three-dimensional structure, and biological activity of protein toxins derived from spider venom. Spiders are the largest group of venomous animals and they are predicted to contain by far the largest number of pharmacologically active peptide toxins (Escoubas et al., 2006). ArachnoServer has been custom-built so that a wide range of biological scientists, including neuroscientists, pharmacologists, and toxinologists, can readily access key data relevant to their discipline without being overwhelmed by extraneous information.
The IMSR is a searchable online database of mouse strains, stocks, and mutant ES cell lines available worldwide, including inbred, mutant, and genetically engineered strains. The goal of the IMSR is to assist the international scientific community in locating and obtaining mouse resources for research. Note that the data content found in the IMSR is as supplied by strain repository holders. For each strain or cell line listed in the IMSR, users can obtain information about: Where that resource is available (Repository Site); What state(s) the resource is available as (e.g. live, cryopreserved embryo or germplasm, ES cells); Links to descriptive information about a strain or ES cell line; Links to mutant alleles carried by a strain or ES cell line; Links for ordering a strain or ES cell line from a Repository; Links for contacting the Repository to send a query
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
Country
iDog, an integrated resource for domestic dog (Canis lupus familiaris) and wild canids, provides the worldwide dog research community a variety of data services. This includes Genes, Genomes, SNPs, Breed/Disease Traits, Gene Expressions, Single Cell, Dog-Human Homolog Diseases and Literatures. In addition, iDog provides Online tools for performing genomic data visualization and analyses.
The Environmental Information Data Centre (EIDC) is part of the Natural Environment Research Council's (NERC) Environmental Data Service and is hosted by the UK Centre for Ecology & Hydrology (UKCEH). We manage nationally-important datasets concerned with the terrestrial and freshwater sciences.
The Wellcome Trust Sanger Institute is a charitably funded genomic research centre located in Hinxton, nine miles south of Cambridge in the UK. We study diseases that have an impact on health globally by investigating genomes. Building on our past achievements and based on priorities that exploit the unique expertise of our Faculty of researchers, we will lead global efforts to understand the biology of genomes. We are convinced of the importance of making this research available and accessible for all audiences. reduce global health burdens.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
The Rat Genome Database is a collaborative effort between leading research institutions involved in rat genetic and genomic research. Its goal, as stated in RFA: HL-99-013 is the establishment of a Rat Genome Database, to collect, consolidate, and integrate data generated from ongoing rat genetic and genomic research efforts and make these data widely available to the scientific community. A secondary, but critical goal is to provide curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data.
Neuroimaging Tools and Resources Collaboratory (NITRC) is currently a free one-stop-shop environment for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, and computing power. Since its debut in 2007, NITRC has helped the neuroscience community to use software and data produced from research that, before NITRC, was routinely lost or disregarded, to make further discoveries. NITRC provides free access to data and enables pay-per-use cloud-based access to unlimited computing power, enabling worldwide scientific collaboration with minimal startup and cost. With NITRC and its components—the Resources Registry (NITRC-R), Image Repository (NITRC-IR), and Computational Environment (NITRC-CE)—a researcher can obtain pilot or proof-of-concept data to validate a hypothesis for a few dollars.
The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
Xenbase's mission is to provide the international research community with a comprehensive, integrated and easy to use web based resource that gives access the diverse and rich genomic, expression and functional data available from Xenopus research. Xenbase also provides a critical data sharing infrastructure for many other NIH-funded projects, and is a focal point for the Xenopus community. In addition to our primary goal of supporting Xenopus researchers, Xenbase enhances the availability and visibility of Xenopus data to the broader biomedical research community.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
TEAM is devoted to monitoring long-term trends in biodiversity, land cover change, climate and ecosystem services in tropical forests. Tropical forests received first billing because of their overwhelming significance to the global biosphere (e.g., their disproportionately large role in global carbon and energy cycles) and because of the extraordinary threats they face. About 50 percent of the species described on Earth, and an even larger proportion of species not yet described, occur in tropical forests. TEAM aims to measure and compare plants, terrestrial mammals, ground-dwelling birds and climate using a standard methodology in a range of tropical forests, from relatively pristine places to those most affected by people. TEAM currently operates in sixteen tropical forest sites across Africa, Asia and Latin America supporting a network of scientists committed to standardized methods of data collection to quantify how plants and animals respond to pressures such as climate change and human encroachment.
In early 2010 we updated the site to facilitate more rapid transfer of our data to the public database and focus our efforts on the core mission of providing expression pattern images to the research community. The original database https://www.fruitfly.org/index.html reproduced functions available on FlyBase, complicating our updates by the requirement to re-synchronize with FlyBase updates. Our expression reports on the new site still link to FlyBase gene reports, but we no longer reproduce FlyBase functions and therefore can update expression data on an ongoing basis instead of more infrequent major releases. All the functions relating to the expression patterns remain and we soon will add an option to search expression patterns by image similarity, in addition to annotation term searches. In a transitional phase we will leave both the old and the new sites up, but the newer data (post Release 2) will appear only on the new website. We welcome any feedback or requests for additional features. - The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
Country
Reptiles and amphibians are collectively known as herpetofauna and are a unique part of Ontario’s biodiversity. An earlier atlas, called the Ontario Herpetofaunal Summary Atlas, provided extensive information about where many of the province’s reptiles and amphibians occurred. The Atlas is transitioning into a new era, with Ontario Nature wrapping-up the data collection phase of this project as of December 1, 2019. Now that we have discontinued our app and online form, we encourage you to continue submitting any future observations through the ‘Herps of Ontario’ project (https://www.inaturalist.org/projects/herps-of-ontario) on iNaturalist or directly to the Natural Heritage Information Centre (nhicrequests@ontario.ca) for species at risk. To learn more about the transition, read our blog (https://ontarionature.org/ontario-reptile-and-amphibian-atlas-changes/)
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
The KNB Data Repository is an international repository intended to facilitate ecological, environmental and earth science research in the broadest senses. For scientists, the KNB Data Repository is an efficient way to share, discover, access and interpret complex ecological, environmental, earth science, and sociological data and the software used to create and manage those data. Due to rich contextual information provided with data in the KNB, scientists are able to integrate and analyze data with less effort. The data originate from a highly-distributed set of field stations, laboratories, research sites, and individual researchers. The KNB supports rich, detailed metadata to promote data discovery as well as automated and manual integration of data into new projects. The KNB supports a rich set of modern repository services, including the ability to assign Digital Object Identifiers (DOIs) so data sets can be confidently referenced in any publication, the ability to track the versions of datasets as they evolve through time, and metadata to establish the provenance relationships between source and derived data.