Reset all


Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 95 result(s)
In 2003, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at NIH established Data, Biosample, and Genetic Repositories to increase the impact of current and previously funded NIDDK studies by making their data and biospecimens available to the broader scientific community. These Repositories enable scientists not involved in the original study to test new hypotheses without any new data or biospecimen collection, and they provide the opportunity to pool data across several studies to increase the power of statistical analyses. In addition, most NIDDK-funded studies are collecting genetic biospecimens and carrying out high-throughput genotyping making it possible for other scientists to use Repository resources to match genotypes to phenotypes and to perform informative genetic analyses.
The Health and Retirement Study (HRS) is a longitudinal panel study that surveys a representative sample of more than 26,000 Americans over the age of 50 every two years. The study has collected information about income, work, assets, pension plans, health insurance, disability, physical health and functioning, cognitive functioning, genetic information and health care expenditures.
The Fragile Families & Child Wellbeing Study is following a cohort of nearly 5,000 children born in large U.S. cities between 1998 and 2000 (roughly three-quarters of whom were born to unmarried parents). We refer to unmarried parents and their children as “fragile families” to underscore that they are families and that they are at greater risk of breaking up and living in poverty than more traditional families. The core Study was originally designed to primarily address four questions of great interest to researchers and policy makers: (1) What are the conditions and capabilities of unmarried parents, especially fathers?; (2) What is the nature of the relationships between unmarried parents?; (3) How do children born into these families fare?; and (4) How do policies and environmental conditions affect families and children?
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes.For both Chromatin- immunoprecipation Transcription Factors and Histone modifications. Sequence files and the associated probability files are also provided.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets.
The Cystic Fibrosis Mutation Database (CFTR1) was initiated by the Cystic Fibrosis Genetic Analysis Consortium in 1989 to increase and facilitate communications among CF researchers, and is maintained by the Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. The specific aim of the database is to provide up to date information about individual mutations in the CFTR gene. In a major upgrade in 2010, all known CFTR mutations and sequence variants have been converted to the standard nomenclature recommended by the Human Genome Variation Society.
The CASRdb site is dedicated to providing information on published mutations and polymorphisms of the calcium-sensing receptor (CASR).
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The Data Coordinating Center (DCC) is the central provider of TCGA data. The DCC standardizes data formats and validates submitted data.
GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. It automatically integrates gene-centric data from ~125 web sources, including genomic, transcriptomic, proteomic, genetic, clinical and functional information.
One of the world’s largest banks of biological, psychosocial and clinical data on people suffering from mental health problems. The Signature center systematically collects biological, psychosocial and clinical indicators from patients admitted to the psychiatric emergency and at four points throughout their journey in the hospital: upon arrival to the emergency room (state of crisis), at the end of their hospital stay, as well as at the beginning and the end of outpatient treatment. For all hospital clients who agree to participate, blood specimens are collected for the purpose of measuring metabolic, genetic, toxic and infectious biomarkers, while saliva samples are collected to measure sex hormones and hair samples are collected to measure stress hormones. Questionnaire has been selected to cover important dimensional aspects of mental illness such as Behaviour and Cognition (Psychosis, Depression, Anxiety, Impulsiveness, Aggression, Suicide, Addiction, Sleep),Socio-demographic Profile (Spiritual beliefs, Social functioning, Childhood experiences, Demographic, Family background) and Medical Data (Medication, Diagnosis, Long-term health, RAMQ data). On 2016, May there are more than 1150 participants and 400 for the longitudinal Follow-Up
ALFRED is a free, web-accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation.
Human Proteinpedia is a community portal for sharing and integration of human protein data. This is a joint project between Pandey at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. This portal allows research laboratories around the world to contribute and maintain protein annotations. Human Protein Reference Database (HPRD) integrates data, that is deposited in Human Proteinpedia along with the existing literature curated information in the context of an individual protein. All the public data contributed to Human Proteinpedia can be queried, viewed and downloaded. Data pertaining to post-translational modifications, protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships may be deposited.
Content type(s)
A small genotype data repository containing data used in recent papers from the Estonian Biocentre. Most of the data pertains to human population genetics. PDF files of the papers are also freely available.
Addgene archives and distributes plasmids for researchers around the globe. They are working with thousands of laboratories to assemble a high-quality library of published plasmids for use in research and discovery. By linking plasmids with articles, scientists can always find data related to the materials they request.
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
!! OFFLINE !! A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 ( and is expected to take about three years.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
GeneWeaver combines cross-species data and gene entity integration, scalable hierarchical analysis of user data with a community-built and curated data archive of gene sets and gene networks, and tools for data driven comparison of user-defined biological, behavioral and disease concepts. Gene Weaver allows users to integrate gene sets across species, tissue and experimental platform. It differs from conventional gene set over-representation analysis tools in that it allows users to evaluate intersections among all combinations of a collection of gene sets, including, but not limited to annotations to controlled vocabularies. There are numerous applications of this approach. Sets can be stored, shared and compared privately, among user defined groups of investigators, and across all users.
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
Content type(s)
The Centre for Applied Genomics hosts a variety of databases related to ongoing supported projects. Curation of these databases is performed in-house by TCAG Bioinformatics staff. The Autism Chromosome Rearrangement Database, The Cystic Fibrosis Mutation Database, TThe Lafora Progressive Myoclonus Epilepsy Mutation and Polymorphism Database are included. Large Scale Genomics Research resources include, the Database of Genomic Variants, The Chromosome 7 Annotation Project, The Human Genome Segmental Duplication Database, and the Non-Human Segmental Duplication Database
The Alzheimer Disease & Frontotemporal Dementia Mutation Database (AD&FTDMDB) aims at collecting all known mutations in the genes related to Alzheimer disease (AD) and fromtotemporal dementias (FTD). Mutations are collected from the literature and from presentations at scientific meetings. In addition, mutations can be submitted to AD&FTDMDB at this web site.
Recode2 is a database of genes that utilize non-standard translation for gene expression purposes. Recoding events described in the database include programmed ribosomal frameshifting, translational bypassing (aka hopping) and mRNA specific codon redefinition. Frameshifting at a particular site often yields two protein products from one coding sequence and sometimes serves a regulatory purpose by acting as a sensor of the level of product protein or of some external ligand. Bypassing (hopping) allows the coupling of two ORFs separated on an mRNA by a coding gap. Codon redefinition occurs when a stop codon is decoded as a standard amino acid (often glutamine or tryptophan), or the 21st amino acid selenocysteine. These recoding events are in competition with standard decoding and are site specific. The efficiency of recoding is often modulated by cis-stimulators and sometimes by trans-factors. The sequences of the genes that use recoding for their expression are in the database. The recoding sites and the known stimulatory signals are annotated in the database together with notes on factors that are known to affect recoding efficiencies.
>>>>!!!!<<<< The Cancer Genomics Hub mission is now completed. The Cancer Genomics Hub was established in August 2011 to provide a repository to The Cancer Genome Atlas, the childhood cancer initiative Therapeutically Applicable Research to Generate Effective Treatments and the Cancer Genome Characterization Initiative. CGHub rapidly grew to be the largest database of cancer genomes in the world, storing more than 2.5 petabytes of data and serving downloads of nearly 3 petabytes per month. As the central repository for the foundational genome files, CGHub streamlined team science efforts as data became as easy to obtain as downloading from a hard drive. The convenient access to Big Data, and the collaborations that CGHub made possible, are now essential to cancer research. That work continues at the NCI's Genomic Data Commons. All files previously stored at CGHub can be found there. The Website for the Genomic Data Commons is here: >>>>!!!!<<<< The Cancer Genomics Hub (CGHub) is a secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. Access to CGHub Data: All researchers using CGHub must meet the access and use criteria established by the National Institutes of Health (NIH) to ensure the privacy, security, and integrity of participant data. CGHub also hosts some publicly available data, in particular data from the Cancer Cell Line Encyclopedia. All metadata is publicly available and the catalog of metadata and associated BAMs can be explored using the CGHub Data Browser.