Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
STOREDB is a platform for the archiving and sharing of primary data and outputs of all kinds, including epidemiological and experimental data, from research on the effects of radiation. It also provides a directory of bioresources and databases containing information and materials that investigators are willing to share. STORE supports the creation of a radiation research commons.
The ClinicalCodes repository aims to hold code lists for all published electronic medical record studies, irrespective of code type (e.g. Read, ICD9-10, SNOMED) and database (CPRD, QResearch, THIN etc.). Once deposited, code lists will be freely available, with no login needed to download codes.
The DesignSafe Data Depot Repository (DDR) is the platform for curation and publication of datasets generated in the course of natural hazards research. The DDR is an open access data repository that enables data producers to safely store, share, organize, and describe research data, towards permanent publication, distribution, and impact evaluation. The DDR allows data consumers to discover, search for, access, and reuse published data in an effort to accelerate research discovery. It is a component of the DesignSafe cyberinfrastructure, which represents a comprehensive research environment that provides cloud-based tools to manage, analyze, curate, and publish critical data for research to understand the impacts of natural hazards. DesignSafe is part of the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI), and aligns with its mission to provide the natural hazards research community with open access, shared-use scholarship, education, and community resources aimed at supporting civil and social infrastructure prior to, during, and following natural disasters. It serves a broad national and international audience of natural hazard researchers (both engineers and social scientists), students, practitioners, policy makers, as well as the general public. It has been in operation since 2016, and also provides access to legacy data dating from about 2005. These legacy data were generated as part of the NSF-supported Network for Earthquake Engineering Simulation (NEES), a predecessor to NHERI. Legacy data and metadata belonging to NEES were transferred to the DDR for continuous preservation and access.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.