Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
AmeriFlux is a network of PI-managed sites measuring ecosystem CO2, water, and energy fluxes in North, Central and South America. It was established to connect research on field sites representing major climate and ecological biomes, including tundra, grasslands, savanna, crops, and conifer, deciduous, and tropical forests. As a grassroots, investigator-driven network, the AmeriFlux community has tailored instrumentation to suit each unique ecosystem. This “coalition of the willing” is diverse in its interests, use of technologies and collaborative approaches. As a result, the AmeriFlux Network continually pioneers new ground.
TreeGenes is a genomic, phenotypic, and environmental data resource for forest tree species. The TreeGenes database and Dendrome project provide custom informatics tools to manage the flood of information.The database contains several curated modules that support the storage of data and provide the foundation for web-based searches and visualization tools. GMOD GUI tools such as CMAP for genetic maps and GBrowse for genome and transcriptome assemblies are implemented here. A sample tracking system, known as the Forest Tree Genetic Stock Center, sits at the forefront of most large-scale projects. Barcode identifiers assigned to the trees during sample collection are maintained in the database to identify an individual through DNA extraction, resequencing, genotyping and phenotyping. DiversiTree, a user-friendly desktop-style interface, queries the TreeGenes database and is designed for bulk retrieval of resequencing data. CartograTree combines geo-referenced individuals with relevant ecological and trait databases in a user-friendly map-based interface. ---- The Conifer Genome Network (CGN) is a virtual nexus for researchers working in conifer genomics. The CGN web site is maintained by the Dendrome Project at the University of California, Davis.
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.