Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
The Henry A. Murray Research Archive is Harvard's endowed, permanent repository for quantitative and qualitative research data at the Institute for Quantitative Social Science, and provides physical storage for the entire IQSS Dataverse Network. Our collection comprises over 100 terabytes of data, audio, and video. We preserve in perpetuity all types of data of interest to the research community, including numerical, video, audio, interview notes, and other data. We accept data deposits through this web site, which is powered by our Dataverse Network software
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.
Mulce (MUltimodal contextualized Learner Corpus Exchange) is a research project supported by the National Research Agency (ANR programme: "Corpus and Tools in the Humanities", ANR-06-CORP-006). A teaching corpus (LETEC - Learning and Teaching Corpora) combines a systematic and structured data set, particularly of interactional data, and traces left by a training course experimentation, conducted partially or completely online and completed by additional technical, human, pedagogical and scientific information to enable the data to be analysed in context.