Reset all


Content Types


AID systems


Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages


Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is a team of researchers, data specialists and computer system developers who are supporting the development of a data management system to store scientific data generated by Gulf of Mexico researchers. The Master Research Agreement between BP and the Gulf of Mexico Alliance that established the Gulf of Mexico Research Initiative (GoMRI) included provisions that all data collected or generated through the agreement must be made available to the public. The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is the vehicle through which GoMRI is fulfilling this requirement. The mission of GRIIDC is to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem.
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. A unique feature of Edmond is the dedicated metadata management, which supports a non-restrictive metadata schema definition, as simple as you like or as complex as your parameters require. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Content type(s)
A machine learning data repository with interactive visual analytic techniques. This project is the first to combine the notion of a data repository with real-time visual analytics for interactive data mining and exploratory analysis on the web. State-of-the-art statistical techniques are combined with real-time data visualization giving the ability for researchers to seamlessly find, explore, understand, and discover key insights in a large number of public donated data sets. This large comprehensive collection of data is useful for making significant research findings as well as benchmark data sets for a wide variety of applications and domains and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have built a multi-level interactive visual analytics engine that allows users to visualize and interactively explore the data in a free-flowing manner.