Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
Country
The Human Genetic Variation Database (HGVD) aims to provide a central resource to archive and display Japanese genetic variation and association between the variation and transcription level of genes. The database currently contains genetic variations determined by exome sequencing of 1,208 individuals and genotyping data of common variations obtained from a cohort of 3,248 individuals.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The HUGO Gene Nomenclature Committee (HGNC) assigned unique gene symbols and names to over 35,000 human loci, of which around 19,000 are protein coding. This curated online repository of HGNC-approved gene nomenclature and associated resources includes links to genomic, proteomic and phenotypic information, as well as dedicated gene family pages.
Country
Indian Genetic Disease Database (IGDD) is an initiative of CSIR Indian Institute of Chemical Biology. It is supported by Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT) of India. The Indian people represent one-sixth of the world population and consists of a ethnically, geographically, and genetically diverse population. In some communities the ratio of genetic disorder is relatively high due to consanguineous marriage practiced in the community. This database has been created to keep track of mutations in the causal genes for genetic diseases common in India and help the physicians, geneticists, and other professionals retrieve and use the information for the benefit of the public. The database includes scientific information about these genetic diseases and disabilities, but also statistical information about these diseases in today's society. Data is categorized by body part affected and then by title of the disease.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
TriTrypDB is an integrated genomic and functional genomic database for pathogens of the family Trypanosomatidae, including organisms in both Leishmania and Trypanosoma genera. TriTrypDB and its continued development are possible through the collaborative efforts between EuPathDB, GeneDB and colleagues at the Seattle Biomedical Research Institute (SBRI).
The Human Ageing Genomic Resources (HAGR) is a collection of databases and tools designed to help researchers study the genetics of human ageing using modern approaches such as functional genomics, network analyses, systems biology and evolutionary analyses.