Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
Country
ArachnoServer is a manually curated database containing information on the sequence, three-dimensional structure, and biological activity of protein toxins derived from spider venom. Spiders are the largest group of venomous animals and they are predicted to contain by far the largest number of pharmacologically active peptide toxins (Escoubas et al., 2006). ArachnoServer has been custom-built so that a wide range of biological scientists, including neuroscientists, pharmacologists, and toxinologists, can readily access key data relevant to their discipline without being overwhelmed by extraneous information.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
InnateDB is a publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures an improved coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralised resource. The database can be mined as a knowledgebase or used with our integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response.
REFOLD has merged to REFOLDdb. REFOLDdb is a unique database for the life sciences research community, providing annotated information for designing new refolding protocols and customizing existing methodologies. We envisage that this resource will find wide utility across broad disciplines that rely on the production of pure, active, recombinant proteins. Furthermore, the database also provides a useful overview of the recent trends and statistics in refolding technology development.We based our resource on the existing REFOLD database, which has not been updated since 2009. We redesigned the data format to be more concise, allowing consistent representations among data entries compared with the original REFOLD database. The remodeled data architecture enhances the search efficiency and improves the sustainability of the database. After an exhaustive literature search we added experimental refolding protocols from reports published 2009 to early 2017. In addition to this new data, we fully converted and integrated existing REFOLD data into our new resource.
The Australian Drosophila Ecology and Evolution Resource (ADEER) from the Hoffmann lab and other contributors is a nationally significant life science collection. The Drosophila Clinal Data Collection contains data on populations along the eastern coast of Australia. It remains an excellent resource for understanding past and future evolutionary responses to climate change. The Drosophila Genomic Data Collection hosts Drosophila genomes sequenced as part of the Genomic Basis for Adaptation to Climate Change Project. 23 genomes have been sequenced as part of this project. Currently assemblies and annotations are available for Drosophila birchii, D. bunnanda, D. hydei, and D. repleta. The Drosophila Species Distribution Data Collection contains distribution data of nine drosophilid species that have been collected in Australia by the Hoffmann lab and other research groups between 1924 and 2005. More than 300 drosophilid species have been identified in the tropical and temperate forests located on the east coast of Australia. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Their varied distribution along the tropical - temperate cline provide a powerful tool for studying climate adaptation and species distribution limits.
Country
TERN's AEKOS data portal is the original gateway to Australian ecology data. It is a ‘data and research methods’ data portal for Australia’s land-dwelling plants, animals and their environments. The primary focus of data content is raw co-located ‘species and environment’ ecological survey data that has been collected at the ‘plot’ level to describe biodiversity, its patterns and ecological processes. It is openly accessible with standard discovery metadata and user-oriented, contextual metadata critical for data reuse. Our services support the ecosystem science community, land managers and governments seeking to publish under COPE publishing ethics and the FAIR data publishing principles. AEKOS is registered with Thomson & Reuters Data Citation Index and is a recommended repository of Nature Publishing’s Scientific Data. There are currently 97,037 sites covering mostly plant biodiversity and co-located environmental data of Australia. The AEKOS initiative is supported by TERN (tern.org.au), hosted by The University of Adelaide and funded by the Australian Government’s National Research Infrastructure for Australia.
The project aims to examine and index the genomic diversity through the generation of complete mitochondrial and nuclear genome sequences of sharks and rays of the Pacific Rim. There is a huge diversity of elasmobranch fishes in this region, but many species are under threat because of poor management and conservation measures in many countries. It is absolutely critical that species’ identities are correct for conservation and fisheries management purposes. This project will provide this clarity of identity for both charismatic and commercially important species through the inclusion of ‘genetypes’ (ie., BioVouchers) and the application of genetic tools that utilize whole mitochondrial and nuclear genome sequences.
Country
The TERN Data Discovery Portal (TDDP) is a gateway to search and access all the datasets published by the Australian Terrestrial Ecosystem Research Network. In the TERN data discovery portal, users can conduct textual and graphical searches on the metadata catalogue using a web interface with temporal, spatial, and eco science related controlled vocabulary keywords. Requests to download data discovered through different data services associated with TERN. Downloading, using and sharing data will be subjected to the TERN data licensing framework (https://www.tern.org.au/datalicence/).
Country
<<<!!!<<< The repository is offline >>>!!!>>> Store.Synchrotron is a fully functional, cloud computing based solution to raw X-ray data archival and dissemination at the Australian Synchrotron, largest stand-alone piece of scientific infrastructure in the southern hemisphere. Store.Synchrotron represents the logical extension of a long-standing effort in the macromolecular crystallography community to ensure that satisfactory evidence is provided to support the interpretation of structural experiments.