Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 7 result(s)
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
The dbMHC database provides an open, publicly accessible platform for DNA and clinical data related to the human Major Histocompatibility Complex (MHC). The dbMHC provides access to human leukocyte antigen (HLA) sequences, HLA allele and haplotype frequencies, and clinical datasets.
Edinburgh DataShare is an online digital repository of multi-disciplinary research datasets produced at the University of Edinburgh, hosted by the Data Library in Information Services. Edinburgh University researchers who have produced research data associated with an existing or forthcoming publication, or which has potential use for other researchers, are invited to upload their dataset for sharing and safekeeping. A persistent identifier and suggested citation will be provided.
Country
Mapping, copy number analysis, sequence and gene expression data generated by the High Resolution Analysis of Follicular Lymphoma Genomes project. The data will be available for 24 patients with follicular lymphoma. All data will be made as widely and freely available as possible while safeguarding the privacy of participants, and protecting confidential and proprietary data.The data from this project will be submitted to public genomic data sources. These sources will be listed on this web site as the data becomes available in these external data sources.
Country
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.