Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
The WorldWide Antimalarial Resistance Network (WWARN) is a collaborative platform generating innovative resources and reliable evidence to inform the malaria community on the factors affecting the efficacy of antimalarial medicines. Access to data is provided through diverse Tools and Resources: WWARN Explorer, Molecular Surveyor K13 Methodology, Molecular Surveyor pfmdr1 & pfcrt, Molecular Surveyor dhfr & dhps.
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
CDC.gov is the Centers for Disease Control and Prevention primary online communication channel. CDC.gov provides users with credible, reliable health information on Data and Statistics, Diseases and Conditions, Emergencies and Disasters, Environmental Health, Healthy Living, Injury, Violence and Safety,Life Stages and Populations, Travelers' Health, Workplace Safety and Health
The Malaria Atlas Project (MAP) brings together researchers based around the world with expertise in a wide range of disciplines from public health to mathematics, geography and epidemiology. We work together to generate new and innovative methods of mapping malaria risk. Ultimately our goal is to produce a comprehensive range of maps and estimates that will support effective planning of malaria control at national and international scales.
The Allele Frequency Net Database (AFND) is a public database which contains frequency information of several immune genes such as Human Leukocyte Antigens (HLA), Killer-cell Immunoglobulin-like Receptors (KIR), Major histocompatibility complex class I chain-related (MIC) genes, and a number of cytokine gene polymorphisms. The Allele Frequency Net Database (AFND) provides a central source, freely available to all, for the storage of allele frequencies from different polymorphic areas in the Human Genome. Users can contribute the results of their work into one common database and can perform database searches on information already available. We have currently collected data in allele, haplotype and genotype format. However, the success of this website will depend on you to contribute your data.
Country
>>>>!!<<< As detected 2017-11-24 TBNet India is no longer accessible >>>>!!<<<< TBNet India is an initiative by the Department of Biotechnology, Govt of India with special focus on Indian contributions on research and various issues related to tuberculosis. Around 13 institutions across India are apart of this initiative. TB Net India focuses to gather clinical, epidemiological and molecular data and make it available to the biomedical community.
MalaCards is an integrated database of human maladies and their annotations, modeled on the architecture and richness of the popular GeneCards database of human genes. MalaCards mines and merges varied web data sources to generate a computerized web card for each human disease. Each MalaCard contains disease specific prioritized annotative information, as well as links between associated diseases, leveraging the GeneCards relational database, search engine, and GeneDecks set-distillation tool. As proofs of concept of the search/distill/infer pipeline we find expected elucidations, as well as potentially novel ones.