Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 17 result(s)
The Research Collection is ETH Zurich's publication platform. It unites the functions of a university bibliography, an open access repository and a research data repository within one platform. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit research data from all domains. They can publish data as a standalone publication, publish it as supplementary material for an article, dissertation or another text, share it with colleagues or a research group, or deposit it for archiving purposes. Research-data-specific features include flexible access rights settings, DOI registration and a DOI preview workflow, content previews for zip- and tar-containers, as well as download statistics and altmetrics for published data. All data uploaded to the Research Collection are also transferred to the ETH Data Archive, ETH Zurich’s long-term archive.
Country
Research Data Australia is the data discovery service of the Australian National Data Service (ANDS). We do not store the data itself here but provide descriptions of, and links to, the data from our data publishing partners. ANDS is funded by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS).
Kaggle is a platform for predictive modelling and analytics competitions in which statisticians and data miners compete to produce the best models for predicting and describing the datasets uploaded by companies and users. This crowdsourcing approach relies on the fact that there are countless strategies that can be applied to any predictive modelling task and it is impossible to know beforehand which technique or analyst will be most effective.
ETH Data Archive is ETH Zurich's long-term preservation solution for digital information such as research data, documents or images. It serves as the backbone of data curation and for most of its content, it is a “dark archive” without public access. In this capacity, the ETH Data Archive also archives the content of ETH Zurich’s Research Collection which is the primary repository for members of the university and the first point of contact for publication of data at ETH Zurich. All data that was produced in the context of research at the ETH Zurich, can be published and archived in the Research Collection. In the following cases, a direct data upload into the ETH Data Archive though, has to be considered: - Upload and registration of software code according to ETH transfer’s requirements for Software Disclosure. - A substantial number of files, have to be regularly submitted for long-term archiving and/or publishing and browser-based upload is not an option: the ETH Data Archive may offer automated data and metadata transfers from source applications (e.g. from a LIMS) via API. - Files for a project on a local computer have to be collected and metadata has to be added before uploading the data to the ETH Data Archive: -- we provide you with the local file editor docuteam packer. Docuteam packer allows to structure, describe, and organise data for an upload into the ETH Data Archive and the depositor decides when submission is due.
The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy. Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III 2008-2014; SDSS-IV 2013 ongoing), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. DSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Astronomie (MPIA Heidelberg), National Astronomical Observatory of China, New Mexico State University, New York University, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
The THREDDS Data Server (TDS) is a web server that provides metadata and data access for scientific datasets, using OPeNDAP, OGC WMS and WCS, HTTP, and other remote data access protocols. Unidata is a diverse community of over 250 institutions vested in the common goal of sharing data, and tools to access and visualize that data. For more than 25 years Unidata has been providing data, tools, and support to enhance earth-system education and research. In an era of increasing data complexity, accessibility, and multidisciplinary integration, Unidata provides a rich set of services and tools.
Country
ResearchGate is a network where 15+ million scientists and researchers worldwide connect to share their work. Researchers can upload data of any type and receive DOIs, detailed statistics and real-time feedback. In Data discovery Section of ResearchGate you can explore the added datasets.
The FAIRDOMHub is built upon the SEEK software suite, which is an open source web platform for sharing scientific research assets, processes and outcomes. FAIRDOM (Web Site) will establish a support and service network for European Systems Biology. It will serve projects in standardizing, managing and disseminating data and models in a FAIR manner: Findable, Accessible, Interoperable and Reusable. FAIRDOM is an initiative to develop a community, and establish an internationally sustained Data and Model Management service to the European Systems Biology community. FAIRDOM is a joint action of ERA-Net EraSysAPP and European Research Infrastructure ISBE.
Country
The Flanders Marine Institute (VLIZ) is a centre for marine and coastal research. As a partner in various projects and networks it promotes and supports the international image of Flemish marine scientific research and international marine education. In its capacity as a coordination and information platform, the Flanders Marine Institute (VLIZ) supports some thousand marine scientists in Flanders by disseminating their knowledge to policymakers, educators, the general public and scientists.
The NDEx Project provides an open-source framework where scientists and organizations can share, store, manipulate, and publish biological network knowledge. The NDEx Project maintains a free, public website; alternatively, users can also decide to run their own copies of the NDEx Server software in cases where the stored networks must be kept in a highly secure environment (such as for HIPAA compliance) or where high application load is incompatible with a shared public resource.
LOVD portal provides LOVD software and access to a list of worldwide LOVD applications through Locus Specific Database list and List of Public LOVD installations. The LOVD installations that have indicated to be included in the global LOVD listing are included in the overall LOVD querying service, which is based on an API.
York Digital Library (YODL) is a University-wide Digital Library service for multimedia resources used in or created through teaching, research and study at the University of York. YODL complements the University's research publications, held in White Rose Research Online and PURE, and the digital teaching materials in the University's Yorkshare Virtual Learning Environment. YODL contains a range of collections, including images, past exam papers, masters dissertations and audio. Some of these are available only to members of the University of York, whilst other material is available to the public. YODL is expanding with more content being added all the time
Country
The Climate Change Centre Austria - Data Centre provides the central national archive for climate data and information. The data made accessible includes observation and measurement data, scenario data, quantitative and qualitative data, as well as the measurement data and findings of research projects.
Country
DBT is the institutional repository of the FSU Jena, the TU Ilmenau and the University of Erfurt as well as members of the other Thuringian universities and colleges can publish scientific documents in the DBT. In individual cases, land users (via the ThULB Jena) can also archive documents in the DBT.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.