Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 57 result(s)
Academic Torrents is a distributed data repository. The academic torrents network is built for researchers, by researchers. Its distributed peer-to-peer library system automatically replicates your datasets on many servers, so you don't have to worry about managing your own servers or file availability. Everyone who has data becomes a mirror for those data so the system is fault-tolerant.
A collection of data at Agency for Healthcare Research and Quality (AHRQ) supporting research that helps people make more informed decisions and improves the quality of health care services. The portal contains U.S.Health Information Knowledgebase (USHIK) and Systematic Review Data Repository (SRDR) and other sources concerning cost, quality, accesibility and evaluation of healthcare and medical insurance.
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are either submitted directly to ArrayExpress and curated by a team of specialist biological curators, or are imported systematically from the NCBI Gene Expression Omnibus database on a weekly basis. Data is collected to MIAME and MINSEQE standards.
BioMagResBank (BMRB) is the publicly-accessible depository for NMR results from peptides, proteins, and nucleic acids recognized by the International Society of Magnetic Resonance and by the IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. In addition, BMRB provides reference information and maintains a collection of NMR pulse sequences and computer software for biomolecular NMR
BioModels is a repository of mathematical models of biological and biomedical systems. It hosts a vast selection of existing literature-based physiologically and pharmaceutically relevant mechanistic models in standard formats. Our mission is to provide the systems modelling community with reproducible, high-quality, freely-accessible models published in the scientific literature.
The CDAWeb data system enables improved display and coordinated analysis of multi-instrument, multimission data bases of the kind whose analysis is critical to meeting the science objectives of the ISTP program and the InterAgency Consultative Group (IACG) Solar-Terrestrial Science Initiative. The system combines the client-server user interface technology of the World Wide Web with a powerful set of customized IDL routines to leverage the data format standards (CDF) and guidelines for implementation adopted by ISTP and the IACG. The system can be used with any collection of data granules following the extended set of ISTP/IACG standards. CDAWeb is being used both to support coordinated analysis of public and proprietary data and better functional access to specific public data such as the ISTP-precursor CDAW 9 data base that is formatted to the ISTP/IACG standards. Many data sets are available through the Coordinated Data Analysis Web (CDAWeb) service and the data coverage continues to grow. These are largely, but not exclusively, magnetospheric data and nearby solar wind data of the ISTP era (1992-present) at time resolutions of approximately a minute. The CDAWeb service provides graphical browsing, data subsetting, screen listings, file creations and downloads (ASCII or CDF). Public data from current (1992-present) space physics missions (including Cluster, IMAGE, ISTP, FAST, IMP-8, SAMPEX and others). Public data from missions before 1992 (including IMP-8, ISIS1/2, Alouette2, Hawkeye and others). Public data from all current and past space physics missions. CDAWeb ist part of "Space Physics Data Facility" (https://www.re3data.org/repository/r3d100010168).
ChEMBL is a database of bioactive drug-like small molecules, it contains 2-D structures, calculated properties (e.g. logP, Molecular Weight, Lipinski Parameters, etc.) and abstracted bioactivities (e.g. binding constants, pharmacology and ADMET data). The data is abstracted and curated from the primary scientific literature, and cover a significant fraction of the SAR and discovery of modern drugs We attempt to normalise the bioactivities into a uniform set of end-points and units where possible, and also to tag the links between a molecular target and a published assay with a set of varying confidence levels. Additional data on clinical progress of compounds is being integrated into ChEMBL at the current time.
The CiardRING is a global directory of web-based information services and datasets for agricultural research for development (ARD). It is the principal tool created through the CIARD initiative to allow information providers to register their services and datasets in various categories and so facilitate the discovery of sources of agriculture-related information across the world. The RING aims to provide an infrastructure to improve the accessibility of the outputs of agricultural research and of information relevant to agriculture.
Climate Data Online (CDO) provides free access to NCDC's archive of global historical weather and climate data in addition to station history information. These data include quality controlled daily, monthly, seasonal, and yearly measurements of temperature, precipitation, wind, and degree days as well as radar data and 30-year Climate Normals
CDAAC is responsible for processing the science data received from COSMIC. This data is currently being processed not long after the data is received, i.e. approximately eighty percent of radio occultation profiles are delivered to operational weather centers within 3 hours of observation as well as in a more accurate post-processed mode (within 8 weeks of observation).
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
DDBJ; DNA Data Bank of Japan is the sole nucleotide sequence data bank in Asia, which is officially certified to collect nucleotide sequences from researchers and to issue the internationally recognized accession number to data submitters.Since we exchange the collected data with EMBL-Bank/EBI; European Bioinformatics Institute and GenBank/NCBI; National Center for Biotechnology Information on a daily basis, the three data banks share virtually the same data at any given time. The virtually unified database is called "INSD; International Nucleotide Sequence Database DDBJ collects sequence data mainly from Japanese researchers, but of course accepts data and issue the accession number to researchers in any other countries.
The European Bioinformatics Institute (EBI) has a long-standing mission to collect, organise and make available databases for biomolecular science. It makes available a collection of databases along with tools to search, download and analyse their content. These databases include DNA and protein sequences and structures, genome annotation, gene expression information, molecular interactions and pathways. Connected to these are linking and descriptive data resources such as protein motifs, ontologies and many others. In many of these efforts, the EBI is a European node in global data-sharing agreements involving, for example, the USA and Japan.
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The Ensembl project produces genome databases for vertebrates and other eukaryotic species. Ensembl is a joint project between the European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI) to develop a software system that produces and maintains automatic annotation on selected genomes.The Ensembl project was started in 1999, some years before the draft human genome was completed. Even at that early stage it was clear that manual annotation of 3 billion base pairs of sequence would not be able to offer researchers timely access to the latest data. The goal of Ensembl was therefore to automatically annotate the genome, integrate this annotation with other available biological data and make all this publicly available via the web. Since the website's launch in July 2000, many more genomes have been added to Ensembl and the range of available data has also expanded to include comparative genomics, variation and regulatory data. Ensembl is a joint project between European Bioinformatics Institute (EBI), an outstation of the European Molecular Biology Laboratory (EMBL), and the Wellcome Trust Sanger Institute (WTSI). Both institutes are located on the Wellcome Trust Genome Campus in Hinxton, south of the city of Cambridge, United Kingdom.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.
EnsemblPlants is a genome-centric portal for plant species. Ensembl Plants is developed in coordination with other plant genomics and bioinformatics groups via the EBI's role in the transPLANT consortium.
The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. A typical workflow includes the isolation and preparation of material for sequencing, a run of a sequencing machine in which sequencing data are produced and a subsequent bioinformatic analysis pipeline. ENA records this information in a data model that covers input information (sample, experimental setup, machine configuration), output machine data (sequence traces, reads and quality scores) and interpreted information (assembly, mapping, functional annotation). Data arrive at ENA from a variety of sources. These include submissions of raw data, assembled sequences and annotation from small-scale sequencing efforts, data provision from the major European sequencing centres and routine and comprehensive exchange with our partners in the International Nucleotide Sequence Database Collaboration (INSDC). Provision of nucleotide sequence data to ENA or its INSDC partners has become a central and mandatory step in the dissemination of research findings to the scientific community. ENA works with publishers of scientific literature and funding bodies to ensure compliance with these principles and to provide optimal submission systems and data access tools that work seamlessly with the published literature.
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.