• * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 2 result(s)
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.
HunCLARIN is a strategic research infrastructure of Hungary’s leading knowledge centres involved in R&D in speech- and language processing. It contains linguistic resources and tools that form the basis of research. The infrastructure has obtained an “SKI” qualification (Strategic Research Infrastructure) in 2010, and has been significantly expanded since. Currently comprising 36 members, the infrastructure includes several general- and specific-purpose text corpora, different language processing tools and analysers, linguistic databases as well as ontologies. RIL HAS was a co-founder of the European CLARIN project, which aims at supporting humanities and social sciences research with the help of language technology and by making digital linguistic resources more easily available. In accordance with these goals HunClarin makes the research infrastructures developed by the respective centres directly accessible for researchers through a common network entry point. A general goal of the infrastructure is to realise the interoperability of the collected research infrastructures and to enable comparing the performance of the respective alternatives and to coordinate different foci in R&D. The coordinator and contact person of the infrastructure is Tamás Váradi, RIL HAS.