Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 10 result(s)
Nuclear reaction database ENDF contains evaluated (recommended) cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions. The evaluated nuclear reaction databases, ENDF, store nuclear data from the major evaluated libraries: ENDF: Evaluated Nuclear Data File: U.S. and Canada, JEFF: Joint Evaluated Fission and Fusion File: Nuclear Energy Agency, JENDL: Japanese Evaluated Nuclear Data Library: Japan, CENDL: China Evaluated Nuclear Data Library: China, BROND: Library of Recommended Evaluated Neutron Data: Russia. as well as various special purpose evaluated libraries.
HITRAN is an acronym for high-resolution transmission molecular absorption database. The HITRAN compilation of the SAO (HIgh resolution TRANmission molecular absorption database) is used for predicting and simulating transmission and emission of light in atmospheres. It is the world-standard database in molecular spectroscopy. The journal article describing it is the most cited reference in the geosciences. There are presently about 5000 HITRAN users world-wide. Its associated database HITEMP (high-temperature spectroscopic absorption parameters) is accessible by the HITRAN website.
The ProteomeXchange consortium has been set up to provide a single point of submission of MS proteomics data to the main existing proteomics repositories, and to encourage the data exchange between them for optimal data dissemination. Current members accepting submissions are: The PRIDE PRoteomics IDEntifications database at the European Bioinformatics Institute focusing mainly on shotgun mass spectrometry proteomics data PeptideAtlas/PASSEL focusing on SRM/MRM datasets.
The Protein Data Bank (PDB) is an archive of experimentally determined three-dimensional structures of biological macromolecules that serves a global community of researchers, educators, and students. The data contained in the archive include atomic coordinates, crystallographic structure factors and NMR experimental data. Aside from coordinates, each deposition also includes the names of molecules, primary and secondary structure information, sequence database references, where appropriate, and ligand and biological assembly information, details about data collection and structure solution, and bibliographic citations. The Worldwide Protein Data Bank (wwPDB) consists of organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). The wwPDB's mission is to maintain a single PDB archive of macromolecular structural data that is freely and publicly available to the global community.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
Hourly "Near-Earth" solar wind magnetic field and plasma data, energetic proton fluxes (>1 to >60 MeV), and geomagnetic and solar activity indices. OMNIWeb is part of "Space Physics Data Facility" (https://www.re3data.org/repository/r3d100010168 ).
This facility permits selective searches of some atomic data files compiled by R. L. Kurucz (Harvard-Smithsonian Center for Astrophysics). The data provided are: - vacuum wavelength (in nm) [above 200 nm calculated using Edlen, Metrologia, Vol. 2, No. 2, 1966]- air wavelength (in nm) above 200 nm- log(gf), - E [in cm-1], j, parity, and configuration for the levels (lower, upper), - information regarding the source of the data. CD-ROM 18 contains the spectrum synthesis programs ATLAS7V, SYNTHE, SPECTRV, ROTATE, BROADEN, PLOTSYN, etc. and sample runs found in directory PROGRAMS; Atomic line data files BELLHEAVY.DAT, BELLLIGHT.DAT, GFIRONLAB.DAT, GULLIVER.DAT, NLTELINES.DAT, GFIRONQ.DAT, obsolete, merged into GFALL, found in directory LINELISTS: Molecular line data files C2AX.ASC, C2BA.ASC, C2DA.ASC, C2EA.ASC, CNAX.ASC, CNBX.ASC, COAX.ASC, COXX.ASC, H2.ASC, HYDRIDES.ASC, SIOAX.ASC, SIOEX.ASC, SIOXX.ASC, found in directory LINELISTS; and my solar flux atlas for test calculations SOLARFLUX.ASC.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.