Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
The Data and Service Center for the Humanities (DaSCH) is an institution of the Swiss Academy of Humanities and Social Sciences (SAHSS) financed by the State Secretariat for Eduction, Research and Innovation (SERI). The primary goals of the DaSCH are - Preservation of research data in the humanities and their long-term data curation. - Ensuring permanent access to research data in order to make it available for further research and thus facilitating the reuse of existing research data in future research. - Providing services for researchers to assist them with the data management plan. - Encouraging the digital networking of databases created in Switzerland or in other countries. - Collaboration and networking with other institutions on digital literacy. The services of the DaSCH are available to all researchers and projects in Switzerland which work in the the domain of the Humanities and have to deal with digital information as well to other research institutions in Switzerland.
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
The UCD Digital Library is a platform for exploring cultural heritage, engaging with digital scholarship, and accessing research data. The UCD Digital Library allows you to search, browse and explore a growing collection of historical materials, photographs, art, interviews, letters, and other exciting content, that have been digitised and made freely available.
DataSpace is a digital repository meant for both archiving and publicly disseminating digital data which are the result of research, academic, or administrative work performed by members of the Princeton University community. DataSpace will promote awareness of the data and address concerns for ensuring the long-term availability of data in the repository.
The KNB Data Repository is an international repository intended to facilitate ecological, environmental and earth science research in the broadest senses. For scientists, the KNB Data Repository is an efficient way to share, discover, access and interpret complex ecological, environmental, earth science, and sociological data and the software used to create and manage those data. Due to rich contextual information provided with data in the KNB, scientists are able to integrate and analyze data with less effort. The data originate from a highly-distributed set of field stations, laboratories, research sites, and individual researchers. The KNB supports rich, detailed metadata to promote data discovery as well as automated and manual integration of data into new projects. The KNB supports a rich set of modern repository services, including the ability to assign Digital Object Identifiers (DOIs) so data sets can be confidently referenced in any publication, the ability to track the versions of datasets as they evolve through time, and metadata to establish the provenance relationships between source and derived data.