Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
Country
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission had opened a new era in geopotential research and had become a significant contributor to the Decade of Geopotentials. In addition with the radio occultation measurements onboard the spacecraft and the infrastructure developed on ground, CHAMP had become a pilot mission for the pre-operational use of space-borne GPS observations for atmospheric and ionospheric research and applications in weather prediction and space weather monitoring. End of the mission of CHAMP was at September 19 2010, after ten years, two month and four days, after 58277 orbits.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
The Common Cold Project began in 2011 with the aim of creating, documenting, and archiving a database that combines final research data from 5 prospective viral-challenge studies that were conducted over the preceding 25 years: the British Cold Study (BCS); the three Pittsburgh Cold Studies (PCS1, PCS2, and PCS3); and the Pittsburgh Mind-Body Center Cold Study (PMBC). These unique studies assessed predictor (and hypothesized mediating) variables in healthy adults aged 18 to 55 years, experimentally exposed them to a virus that causes the common cold, and then monitored them for development of infection and signs and symptoms of illness.
Content type(s)
IGETS is the International Geodynamics and Earth Tide Service of the International Association of Geodesy (IAG). The main objective of IGETS is to monitor temporal variations of the Earth gravity field through longā€term records from ground gravimeters, tiltmeters, strainmeters and other geodynamic sensors. IGETS continues the activities of the Global Geodynamics Project (GGP) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Furthermore, IGETS continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of gravimeters, tiltmeters, strainmeters and other geodynamic sensors. GFZ is the main Data Center and operates the IGETS data base of worldwide high precision SG records. EOST (Ecole et Observatoire des Sciences de la Terre, Strasbourg, France) is the secondary Data Center, The University of French Polynesia (Tahiti) and EOST (Strasbourg, France) are the two current Analysis Centers.
Country
From April 2020 to March 2023, the Covid-19 Immunity Task Force (CITF) supported 120 studies to generate knowledge about immunity to SARS-CoV-2. The subjects addressed by these studies include the extent of SARS-CoV-2 infection in Canada, the nature of immunity, vaccine effectiveness and safety, and the need for booster shots among different communities and priority populations in Canada. The CITF Databank was developed to further enhance the impact of CITF funded studies by allowing additional research using the data collected from CITF-supported studies. The CITF Databank centralizes and harmonizes individual-level data from CITF-funded studies that have met all ethical requirements to deposit data in the CITF Databank and have completed a data sharing agreement. The CITF Databank is an internationally unique resource for sharing epidemiological and laboratory data from studies about SARS-CoV-2 immunity in different populations. The types of research that are possible with data from the CITF Databank include observational epidemiological studies, mathematical modelling research, and comparative evaluation of surveillance and laboratory methods.
Project Tycho is a repository for global health, particularly disease surveillance data. Project Tycho currently includes data for 92 notifiable disease conditions in the US, and up to three dengue-related conditions for 99 countries. Project Tycho has compiled data from reputable sources such as the US Centers for Disease Control, the World Health Organization, and National health agencies for countries around the world. Project Tycho datasets are highly standardized and have rich metadata to improve access, interoperability, and reuse of global health data for research and innovation.
<<<!!!<<<The repository is no longer available. The printversion see: https://www.taylorfrancis.com/books/mono/10.1201/9781003220435/encyclopedia-astronomy-astrophysics-murdin >>>!!!>>> This unique resource covers the entire field of astronomy and astrophysics and this online version includes the full text of over 2,750 articles, plus sophisticated search and retrieval functionality, links to the primary literature, and is frequently updated with new material. An active editorial team, headed by the Encyclopedia's editor-in-chief, Paul Murdin, oversees the continual commissioning, reviewing and loading of new and revised content.In a unique collaboration, Nature Publishing Group and Institute of Physics Publishing published the most extensive and comprehensive reference work in astronomy and astrophysics in both print and online formats. First published as a four volume print edition in 2001, the initial Web version went live in 2002, and contained the original print material and was rapidly supplemented with numerous updates and newly commissioned material. Since July 2006 the Encyclopedia is published solely by Taylor & Francis.
The ODIN Portal hosts scientific databases in the domains of structural materials and hydrogen research and is operated on behalf of the European energy research community by the Joint Research Centre, the European Commission's in-house science service providing independent scientific advice and support to policies of the European Union. ODIN contains engineering databases (Mat-Database, Hiad-Database, Nesshy-Database, HTR-Fuel-Database, HTR-Graphit-Database) and document management sites and other information related to European research in the area of nuclear and conventional energy.
!!! >>> Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained <<< !!!! GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.