Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The Vienna Atomic Line Database (VALD) is a collection of atomic and molecular transition parameters of astronomical interest. VALD offers tools for selecting subsets of lines for typical astrophysical applications: line identification, preparing for spectroscopic observations, chemical composition and radial velocity measurements, model atmosphere calculations etc.
Country
An institutional repository at Graz University of Technology to enable storing, sharing and publishing research data, publications and open educational resources. It provides open access services and follows the FAIR principles.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
The Australian National University undertake work to collect and publish metadata about research data held by ANU, and in the case of four discipline areas, Earth Sciences, Astronomy, Phenomics and Digital Humanities to develop pipelines and tools to enable the publication of research data using a common and repeatable approach. Aims and outcomes: To identify and describe research data held at ANU, to develop a consistent approach to the publication of metadata on the University's data holdings: Identification and curation of significant orphan data sets that might otherwise be lost or inadvertently destroyed, to develop a culture of data data sharing and data re-use.
Country
Repository of the Faculty of Science is institutional repository that gathers, permanently stores and allows access to the results of scientific and intellectual property of the Faculty of Science, University of Zagreb. The objects that can be stored in the repository are research data, scientific articles, conference papers, theses, dissertations, books, teaching materials, images, video and audio files, and presentations. To improve searchability, all materials are described with predetermined set of metadata.
The COordinated Molecular Probe Line Extinction Thermal Emission Survey of Star Forming Regions (COMPLETE) provides a range of data complementary to the Spitzer Legacy Program "From Molecular Cores to Planet Forming Disks" (c2d) for the Perseus, Ophiuchus and Serpens regions. In combination with the Spitzer observations, COMPLETE will allow for detailed analysis and understanding of the physics of star formation on scales from 500 A.U. to 10 pc.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark and Bolshoi project, and the CLUES project. The CosmoSim webpage provides access to several cosmological simulations, with a separate database for each simulation. Simulations overview: https://www.cosmosim.org/cms/simulations/simulations-overview/ . CosmoSim is a contribution to the German Astrophysical Virtual Observatory.