Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
The Research Collection is ETH Zurich's publication platform. It unites the functions of a university bibliography, an open access repository and a research data repository within one platform. Researchers who are affiliated with ETH Zurich, the Swiss Federal Institute of Technology, may deposit research data from all domains. They can publish data as a standalone publication, publish it as supplementary material for an article, dissertation or another text, share it with colleagues or a research group, or deposit it for archiving purposes. Research-data-specific features include flexible access rights settings, DOI registration and a DOI preview workflow, content previews for zip- and tar-containers, as well as download statistics and altmetrics for published data. All data uploaded to the Research Collection are also transferred to the ETH Data Archive, ETH Zurich’s long-term archive.
The UC San Diego Library Digital Collections website gathers two categories of content managed by the Library: library collections (including digitized versions of selected collections covering topics such as art, film, music, history and anthropology) and research data collections (including research data generated by UC San Diego researchers).
The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy. Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III 2008-2014; SDSS-IV 2013 ongoing), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. DSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Astronomie (MPIA Heidelberg), National Astronomical Observatory of China, New Mexico State University, New York University, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.
Merritt is a curation repository for the preservation of and access to the digital research data of the ten campus University of California system and external project collaborators. Merritt is supported by the University of California Curation Center (UC3) at the California Digital Library (CDL). While Merritt itself is content agnostic, accepting digital content regardless of domain, format, or structure, it is being used for management of research data, and it forms the basis for a number of domain-specific repositories, such as the ONEShare repository for earth and environmental science and the DataShare repository for life sciences. Merritt provides persistent identifiers, storage replication, fixity audit, complete version history, REST API, a comprehensive metadata catalog for discovery, ATOM-based syndication, and curatorially-defined collections, access control rules, and data use agreements (DUAs). Merritt content upload and download may each be curatorially-designated as public or restricted. Merritt DOIs are provided by UC3's EZID service, which is integrated with DataCite. All DOIs and associated metadata are automatically registered with DataCite and are harvested by Ex Libris PRIMO and Thomson Reuters Data Citation Index (DCI) for high-level discovery. Merritt is also a member node in the DataONE network; curatorially-designated data submitted to Merritt are automatically registered with DataONE for additional replication and federated discovery through the ONEMercury search/browse interface.
Kaggle is a platform for predictive modelling and analytics competitions in which statisticians and data miners compete to produce the best models for predicting and describing the datasets uploaded by companies and users. This crowdsourcing approach relies on the fact that there are countless strategies that can be applied to any predictive modelling task and it is impossible to know beforehand which technique or analyst will be most effective.
The FAIRDOMHub is built upon the SEEK software suite, which is an open source web platform for sharing scientific research assets, processes and outcomes. FAIRDOM (Web Site) will establish a support and service network for European Systems Biology. It will serve projects in standardizing, managing and disseminating data and models in a FAIR manner: Findable, Accessible, Interoperable and Reusable. FAIRDOM is an initiative to develop a community, and establish an internationally sustained Data and Model Management service to the European Systems Biology community. FAIRDOM is a joint action of ERA-Net EraSysAPP and European Research Infrastructure ISBE.
The focus of PolMine is on texts published by public institutions in Germany. Corpora of parliamentary protocols are at the heart of the project: Parliamentary proceedings are available for long stretches of time, cover a broad set of public policies and are in the public domain, making them a valuable text resource for political science. The project develops repositories of textual data in a sustainable fashion to suit the research needs of political science. Concerning data, the focus is on converting text issued by public institutions into a sustainable digital format (TEI/XML).
Country
The Climate Change Centre Austria - Data Centre provides the central national archive for climate data and information. The data made accessible includes observation and measurement data, scenario data, quantitative and qualitative data, as well as the measurement data and findings of research projects.
Country
Rodare is the institutional research data repository at HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Rodare allows HZDR researchers to upload their research data and enrich those with metadata to make them findable, accessible, interoperable and retrievable (FAIR). By publishing all associated research data via Rodare research reproducibility can be improved. Uploads receive a Digital Object Identfier (DOI) and can be harvested via a OAI-PMH interface.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.
For datasets big and small; Store your research data online. Quickly and easily upload files of any type and we will host your research data for you. Your experimental research data will have a permanent home on the web that you can refer to.