Reset all


Content Types


AID systems



Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 16 result(s)
The BioStudies database holds descriptions of biological studies, links to data from these studies in other databases at EMBL-EBI or outside, as well as data that do not fit in the structured archives at EMBL-EBI. The database accepts submissions via an online tool, or in a simple tab-delimited format. It also enables authors to submit supplementary information and link to it from the publication.
ToxoDB is a genome database for the genus Toxoplasma, a set of single-celled eukaryotic pathogens that cause human and animal diseases, including toxoplasmosis.
STRING is a database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations; they are derived from four sources: - Genomic Context - High-throughput Experiments - (Conserved) Coexpression - Previous Knowledge STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
The Database of Protein Disorder (DisProt) is a curated database that provides information about proteins that lack fixed 3D structure in their putatively native states, either in their entirety or in part. DisProt is a community resource annotating protein sequences for intrinsically disorder regions from the literature. It classifies intrinsic disorder based on experimental methods and three ontologies for molecular function, transition and binding partner.
TopFIND is a protein-centric database for the annotation of protein termini currently in its third version. Non-canonical protein termini can be the result of multiple different biological processes, including pre-translational processes such as alternative splicing and alternative translation initiation or post-translational protein processing by proteases that cleave proteases as part of protein maturation or as a regulatory modification. Accordingly, protein termini evidence in TopFIND is inferred from other databases such as ENSEMBL transcripts, TISdb for alternative translation initiation, MEROPS for protein cleavage by proteases, and UniProt for canonical and protein isoform start sites.
The European Variation Archive is an open-access database of all types of genetic variation data from all species. The EVA provides access to highly detailed, granular, raw variant data from human, with other species to follow. As of September 2017, EMBL-EBI will maintain reliable accessions for non-human genetic variation data through the European Variation Archive (EVA). NCBI's dbSNP database will continue to maintain stable identifiers for human genetic variation data only. This change will enable a more rapid turnaround for data sharing in this burgeoning field.
MTD is focused on mammalian transcriptomes with a current version that contains data from humans, mice, rats and pigs. Regarding the core features, the MTD browses genes based on their neighboring genomic coordinates or joint KEGG pathway and provides expression information on exons, transcripts, and genes by integrating them into a genome browser. We developed a novel nomenclature for each transcript that considers its genomic position and transcriptional features.
IMGT/GENE-DB is the IMGT genome database for IG and TR genes from human, mouse and other vertebrates. IMGT/GENE-DB provides a full characterization of the genes and of their alleles: IMGT gene name and definition, chromosomal localization, number of alleles, and for each allele, the IMGT allele functionality, and the IMGT reference sequences and other sequences from the literature. IMGT/GENE-DB allele reference sequences are available in FASTA format (nucleotide and amino acid sequences with IMGT gaps according to the IMGT unique numbering, or without gaps).
IMGT/mAb-DB provides a unique expertised resource on monoclonal antibodies (mAbs) with diagnostic or therapeutic indications, fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA) and relative proteins of the immune system (RPI) with clinical indications.
EuPathDB (formerly ApiDB) is an integrated database covering the eukaryotic pathogens in the genera Acanthamoeba, Annacaliia, Babesia, Crithidia, Cryptosporidium, Edhazardia, Eimeria, Encephalitozoon, Endotrypanum, Entamoeba, Enterocytozoon, Giardia, Gregarina, Hamiltosporidium, Leishmania, Nematocida, Neospora, Nosema, Plasmodium, Theileria, Toxoplasma, Trichomonas, Trypanosoma and Vavraia, Vittaforma). While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all of these resources, and the opportunity to leverage orthology for searches across genera.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.