Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 32 result(s)
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.
Brainlife promotes engagement and education in reproducible neuroscience. We do this by providing an online platform where users can publish code (Apps), Data, and make it "alive" by integragrate various HPC and cloud computing resources to run those Apps. Brainlife also provide mechanisms to publish all research assets associated with a scientific project (data and analyses) embedded in a cloud computing environment and referenced by a single digital-object-identifier (DOI). The platform is unique because of its focus on supporting scientific reproducibility beyond open code and open data, by providing fundamental smart mechanisms for what we refer to as “Open Services.”
Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, GDAC Firehose now sits atop terabytes of analysis-ready TCGA data and reliably executes thousands of pipelines per month. More information: https://broadinstitute.atlassian.net/wiki/spaces/GDAC/
Content type(s)
>>>!!!<<< The NCI Cancer Models Database, caMOD, was retired on December 24, 2015. Information about many of the mouse models hosted in caMOD was obtained from the Jackson Laboratory Mouse Tumor Biology (MTB) Database and can be accessed through that resource http://tumor.informatics.jax.org/mtbwi/index.do . See caMOD Retirement Announcement https://wiki.nci.nih.gov/display/caMOD/caMOD+Retirement+Announcement >>>>!!<<< Query the Cancer Models database for models submitted by fellow researchers. Retrieve information about the making of models, their genetic description, histopathology, derived cell lines, associated images, carcinogenic agents, and therapeutic trials. Links to associated publications and other resources are provided.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).
CorrDB has data of cattle, relating to meat production, milk production, growth, health, and others. This database is designed to collect all published livestock genetic/phenotypic trait correlation data, aimed at facilitating genetic network analysis or systems biology studies.
<<<!!!<<< Phasing out support for the Database of Genomic Variants archive (DGVa). The submission, archiving, and presentation of structural variation services offered by the DGVa is transitioning to the European Variation Archive (EVA) https://www.re3data.org/repository/r3d100011553. All of the data shown in the DGVa website is already searchable and browsable from the EVA Study Browser. Submission of structural variation data to EVA is done using the VCF format. The VCF specification allows representing multiple types of structural variants such as insertions, deletions, duplications and copy-number variants. Other features such as symbolic alleles, breakends, confidence intervals etc., support more complex events, such as translocations at an imprecise position. >>>!!!>>>
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
The HUGO Gene Nomenclature Committee (HGNC) assigned unique gene symbols and names to over 35,000 human loci, of which around 19,000 are protein coding. This curated online repository of HGNC-approved gene nomenclature and associated resources includes links to genomic, proteomic and phenotypic information, as well as dedicated gene family pages.
IntEnz contains the recommendation of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalyzed reactions. Users can browse by enzyme classification or use advanced search options to search enzymes by class, subclass and sub-subclass information.
InterPro collects information about protein sequence analysis and classification, providing access to a database of predictive protein signatures used for the classification and automatic annotation of proteins and genomes. Sequences in InterPro are classified at superfamily, family, and subfamily. InterPro predicts the occurrence of functional domains, repeats, and important sites, and adds in-depth annotation such as GO terms to the protein signatures.
iRefWeb is an interface to a relational database containing the latest build of the interaction Reference Index (iRefIndex) which integrates protein interaction data from ten different interaction databases: BioGRID, BIND, CORUM, DIP, HPRD, INTACT, MINT, MPPI, MPACT and OPHID.
The Department of Energy Systems Biology Knowledgebase (KBase) is a software and data platform designed to meet the grand challenge of systems biology: predicting and designing biological function. KBase integrates data and tools in a unified graphical interface so users do not need to access them from numerous sources or learn multiple systems in order to create and run sophisticated systems biology workflows. Users can perform large-scale analyses and combine multiple lines of evidence to model plant and microbial physiology and community dynamics. KBase is the first large-scale bioinformatics system that enables users to upload their own data, analyze it (along with collaborator and public data), build increasingly realistic models, and share and publish their workflows and conclusions. KBase aims to provide a knowledgebase: an integrated environment where knowledge and insights are created and multiplied.
<<<!!!<<< Effective May 2024, NCBI's Assembly resource will no longer be available. NCBI Assembly data can now be found on the NCBI Datasets genome pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> A database providing information on the structure of assembled genomes, assembly names and other meta-data, statistical reports, and links to genomic sequence data.
>>>!!! <<< The Epigenomics database was retired on June 1, 2016. All epigenomics data are available in our GEO resource https://www.ncbi.nlm.nih.gov/geo >>> !!! <<< The Epigenomics database provides genomics maps of stable and reprogrammable nuclear changes that control gene expression and influence health. Users can browse current epigenomic experiments as well as search, compare and browse samples from multiple biological sources in gene-specific contexts. Many epigenomes contain modifications with histone marks, DNA methylation and chromatin structure activity. NCBI Epigenomics database contains datasets from the NIH Roadmap Epigenomics Project.
The NCBI Nucleotide database collects sequences from such sources as GenBank, RefSeq, TPA, and PDB. Sequences collected relate to genome, gene, and transcript sequence data, and provide a foundation for research related to the biomedical field.
The Structure database provides three-dimensional structures of macromolecules for a variety of research purposes and allows the user to retrieve structures for specific molecule types as well as structures for genes and proteins of interest. Three main databases comprise Structure-The Molecular Modeling Database; Conserved Domains and Protein Classification; and the BioSystems Database. Structure also links to the PubChem databases to connect biological activity data to the macromolecular structures. Users can locate structural templates for proteins and interactively view structures and sequence data to closely examine sequence-structure relationships.
TPA is a database that contains sequences built from the existing primary sequence data in GenBank. TPA records are retrieved through the Nucleotide Database and feature information on the sequence, how it was cataloged, and proper way to cite the sequence information.