Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
Galaxies, made up of billions of stars like our Sun, are the beacons that light up the structure of even the most distant regions in space. Not all galaxies are alike, however. They come in very different shapes and have very different properties; they may be large or small, old or young, red or blue, regular or confused, luminous or faint, dusty or gas-poor, rotating or static, round or disky, and they live either in splendid isolation or in clusters. In other words, the universe contains a very colourful and diverse zoo of galaxies. For almost a century, astronomers have been discussing how galaxies should be classified and how they relate to each other in an attempt to attack the big question of how galaxies form. Galaxy Zoo (Lintott et al. 2008, 2011) pioneered a novel method for performing large-scale visual classifications of survey datasets. This webpage allows anyone to download the resulting GZ classifications of galaxies in the project.
Content type(s)
Country
German astronomical observatories own considerable collection of photographic plates. While these observations lead to significant discoveries in the past, they are also of interest for scientists today and in the future. In particular, for the study of long-term variability of many types of stars, these measurements are of immense scientific value. There are about 85000 plates in the archives of Hamburger Sternwarte, Dr. Karl Remeis-Sternwarte Bamberg, and Leibniz-Institut für Astrophysik Potsdam (AIP). The plates are digitized with high-resolution flatbed scanners. In addition, the corresponding plate envelopes and observation logbooks are digitized, and further metadata are entered into the database. The work is carried out within the project “Digitalisierung astronomischer Fotoplatten und ihre Integration in das internationale Virtual Observatory”, which is funded by the DFG.
The ESO/ST-ECF science archive is a joint collaboration of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Space Telescope - European Coordinating Facility (ST-ECF). ESO observational data can be requested after the proprietary period by the astronomical community.
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
Country
The aim of the project KCDC (KASCADE Cosmic Ray Data Centre) is the installation and establishment of a public data centre for high-energy astroparticle physics based on the data of the KASCADE experiment. KASCADE was a very successful large detector array which recorded data during more than 20 years on site of the KIT-Campus North, Karlsruhe, Germany (formerly Forschungszentrum, Karlsruhe) at 49,1°N, 8,4°O; 110m a.s.l. KASCADE collected within its lifetime more than 1.7 billion events of which some 425.000.000 survived all quality cuts. Initially about 160 million events are available here for public usage.
Country
ChroTel is a telescope to observe the solar chromosphere across the full disk. ChroTel observes the Sun pseudo-simultaneously in three channels at Ca II K, H-alpha and Helium 1083.