Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
This interface provides access to several types of data related to the Chesapeake Bay. Bay Program databases can be queried based upon user-defined inputs such as geographic region and date range. Each query results in a downloadable, tab- or comma-delimited text file that can be imported to any program (e.g., SAS, Excel, Access) for further analysis. Comments regarding the interface are encouraged. Questions in reference to the data should be addressed to the contact provided on subsequent pages.
The Agricultural and Environmental Data Archive (AEDA) is the direct result of a project managed by the Freshwater Biological Association in partnership with the Centre for e-Research at King's College London, and funded by the Department for the Environment, Food & Rural Affairs (Defra). This project ran from January 2011 until December 2014 and was called the DTC Archive Project, because it was initially related to the Demonstration Test Catchments Platform developed by Defra. The archive was also designed to hold data from the GHG R&D Platform (www.ghgplatform.org.uk). After the DTC Archive Project was completed the finished archive was renamed as AEDA to reflect it's broader remit to archive data from any and all agricultural and environmental research activities.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
The Andrews Forest is a place of inquiry. Our mission is to support research on forests, streams, and watersheds, and to foster strong collaboration among ecosystem science, education, natural resource management, and the humanities. Our place and our work are administered cooperatively by the USDA Forest Service's Pacific Northwest Research Station, Oregon State University, and the Willamette National Forest. First established in 1948 as an US Forest Service Experimental Forest, the H.J. Andrews is a 16,000-acre ecological research site in Oregon's beautiful western Cascades Mountains. The landscape is home to iconic Pacific Northwest old-growth forests of Cedar and Hemlock, and moss-draped ancient Douglas Firs; steep terrain; and fast, cold-running streams. In 1980 the Andrews became a charter member of the National Science Foundation's Long-Term Ecological Research (LTER) Program.
Ag Data Commons provides access to a wide variety of open data relevant to agricultural research. We are a centralized repository for data already on the web, as well as for new data being published for the first time. While compliance with the U.S. Federal public access and open data directives is important, we aim to surpass them. Our goal is to foster innovative data re-use, integration, and visualization to support bigger, better science and policy.