Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 38 result(s)
>>>!!!<<< 2019-12-04: The repository is no longer available >>>!!!<<< Presented here are excitation cross sections measured for a select number of transitions using the Merged Electron-Ion Beams Energy Loss (MEIBEL) experiment. This is a collaboration of JILA and the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL), where the apparatus is located. Since there exist a nearly infinite number of transitions in multicharged ions we have chosen a few that serve as benchmarks for theoretical efforts. Of particular interest are forbidden transitions which are often dominated by dielectronic resonances whose positions and magnitudes are difficult to predict theoretically.
Core nuclear reaction database contain recommended, evaluated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions. The data were analyzed by experienced nuclear physicists to produce recommended libraries for one of the national nuclear data projects (USA, Europe, Japan, Russia and China). All data are stored in the internationally-adopted ENDF-6 format maintained by CSEWG.
Physical Reference Data compiles physical data and biblographic sources: Physical constants, atomic spectroscopy data, molecular spectroscopic data, X-Ray and Gamma-Ray data, nuclear physics data etc.
Atomic and Ionic UV/VUV Linelist . This facility permits selective searches of some atomic data compliled by R. L. Kelly. The data provided are: - vacuum wavelength [in nm], - intensity estimate, - E [in cm-1], j, and configuration for lower and upper levels, - multiplet (where available), - reference numbers of the sources of the data.
>>>!!!<<< 2019-12-04: The repository is no longer available >>>!!!<<< Presented here are experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments.
The information accumulated in the SPECTR-W3 ADB contains over 450,000 records and includes factual experimental and theoretical data on ionization potentials, energy levels, wavelengths, radiation transition probabilities, oscillator strengths, and (optionally) the parameters of analytical approximations of electron-collisional cross-sections and rates for atoms and ions. Those data were extracted from publications in physical journals, proceedings of the related conferences, special-purpose publications on atomic data, and provided directly by authors. The information is supplied with references to the original sources and comments, elucidating the details of experimental measurements or calculations, where necessary and available. To date, the SPECTR-W3 ADB is the largest factual database in the world containing the information on spectral properties of multicharged ions.
The primary interaction of low-energy x rays within matter, viz. photoabsorption and coherent scattering, have been described for photon energies outside the absorption threshold regions. These tables are based on a compilation of the available experimental measurements and theoretical calculations. For many elements there is little or no published data and in such cases it was necessary to rely on theoretical calculations and interpolations across Z. In order to improve the accuracy in the future considerably more experimental measurements are needed.
Lab Notes Online presents historic scientific data from the Caltech Archives' collections in digital facsimile. Beginning in the fall of 2008, the first publication in the series is Robert A. Millikan's notebooks for his oil drop experiments to measure the charge of the electron, dating from October 1911 to April 1912. Other laboratory, field, or research notes will be added to the archive over time.
>>>!!!<<< 2019-12-03: The repository is no longer available >>>!!!<<< Please use https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html The atomic line data used in this database are taken from Bob Kurucz' CD-ROM 23 of spectroscopic line calculations. The database contains all lines of the file "gfall.dat" with the following items for each line: Wavelength; loggf; element code; lower level: energy, J, configuration; upper level: energy, J, configuration; gamma r; gamma s; gamma w; reference code. CD-ROM 23 has all the atomic line data with good wavelengths in one large file and in one file for each species. The big file is also divided into 10 nm and 100 nm sections for convenience. Also given are hyperfine line lists for neutral Sc, V, Mn, and Co that were produced by splitting all the energy levels for which laboratory data are available (only a small fraction).
A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z ≤ 100), at energies from 1 keV to 100 GeV.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The Protein Data Bank (PDB) is an archive of experimentally determined three-dimensional structures of biological macromolecules that serves a global community of researchers, educators, and students. The data contained in the archive include atomic coordinates, crystallographic structure factors and NMR experimental data. Aside from coordinates, each deposition also includes the names of molecules, primary and secondary structure information, sequence database references, where appropriate, and ligand and biological assembly information, details about data collection and structure solution, and bibliographic citations. The Worldwide Protein Data Bank (wwPDB) consists of organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). The wwPDB's mission is to maintain a single PDB archive of macromolecular structural data that is freely and publicly available to the global community.
This database gives values of the basic constants and conversion factors of physics and chemistry resulting from the 2002 least-squares adjustment of the fundamental physical constants as published by the CODATA Task Group on Fundamental Constants and recommended for international use by CODATA.
The Atomic Data for Astrophysics server provides links to basic atomic data required for calculation of the ionization state of astrophysical plasmas and for quantitative spectroscopy.
HITRAN is an acronym for high-resolution transmission molecular absorption database. The HITRAN compilation of the SAO (HIgh resolution TRANmission molecular absorption database) is used for predicting and simulating transmission and emission of light in atmospheres. It is the world-standard database in molecular spectroscopy. The journal article describing it is the most cited reference in the geosciences. There are presently about 5000 HITRAN users world-wide. Its associated database HITEMP (high-temperature spectroscopic absorption parameters) is accessible by the HITRAN website.
The Yeast Resource Center Public Image Repository is a database of fluorescent microscopy images and their associated metadata/experimental parameters. The images depict the localization, co-localization and FRET (fluorescence energy transfer) of proteins in cells, particularly in the budding yeast Saccharomyces cerevisiae as a model organism. Users may download the entire datasets to improve their research.
Nuclear Data Services contains atomic, molecular and nuclear data sets for the development and maintenance of nuclear technologies. It includes energy-dependent reaction probabilities (cross sections), the energy and angular distributions of reaction products for many combinations of target and projectile, and the atomic and nuclear properties of excited states, and their radioactive decay data. Their main concern is providing data required to design a modern nuclear reactor for electricity production. Approximately 11.5 million nuclear data points have been measured and compiled into computerized form.
AtomDB is an atomic database useful for X-ray plasma spectral modeling. The current version of AtomDB is primarly used for modeing collisional plasmas, those where hot electrons colliding with astrophysically abundant elements and ions create X-ray emission. However, AtomDB is also useful when modeling absorption by elements and ions or even photoionized plasmas, where X-ray photons (often from a simple power-law source) interacting with elements and ions create complex spectra.
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.