Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 95 result(s)
Country
The arctic data archive system (ADS) collects observation data and modeling products obtained by various Japanese research projects and gives researchers to access the results. By centrally managing a wide variety of Arctic observation data, we promote the use of data across multiple disciplines. Researchers use these integrated databases to clarify the mechanisms of environmental change in the atmosphere, ocean, land-surface and cryosphere. That ADS will be provide an opportunity of collaboration between modelers and field scientists, can be expected.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here http://asterweb.jpl.nasa.gov/data.asp . In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) http://ava.jpl.nasa.gov/ .
The ASTER Volcano Archive (AVA) is the worlds largest specialty archive of volcano data. For 1,549 recently active volcanos listed by the Smithsonian Global Volcanism Program, the AVA has collected the entirety of high-resolution multispectral ASTER data and made it available to the public. Also included are digital elevation maps, NOAA ash advisories, alteration zone imagery, and thermal anomaly reports. LANDSAT7 data are also being processed.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
Country
Australian Ocean Data Network (AODN) provides data collected by the Australian marine community. AODN's data is searchable via map interface and metadata catalogue. AODN is Australia's exhaustive repository for marine and climate data. AODN has merged with IMOS eMarine Information Infrastructure (eMII) Facility in May 2016. IMOS is a multi-institutional collaboration with a focus on open data access. It is ideally placed to manage the AODN on behalf of the Australian marine and climate community.
BIOS is a system designed to enable the management, visualization, and analysis of biogeographic data collected by the California Department of Fish and Wildlife and its partner organizations. BIOS integrates GIS, relational database management, and ESRI's ArcGIS Server technology to create a statewide, integrated information management tool that can be used on any computer with access to the Internet.
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.
Country
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission had opened a new era in geopotential research and had become a significant contributor to the Decade of Geopotentials. In addition with the radio occultation measurements onboard the spacecraft and the infrastructure developed on ground, CHAMP had become a pilot mission for the pre-operational use of space-borne GPS observations for atmospheric and ionospheric research and applications in weather prediction and space weather monitoring. End of the mission of CHAMP was at September 19 2010, after ten years, two month and four days, after 58277 orbits.
The objective of this database is to stimulate the exchange of information and the collaboration between researchers within the ChArMEx community. However, this community is not exclusive and researchers not directly involved in ChArMEx, but who wish to contribute to the achievements of ChArMEx scientific and/or educational goals are welcome to join-in. The database is a depository for all the data collected during the various projects that contribute to ChArMEx coordinated program. It aims at documenting, storing and distributing the data produced or used by the project community. However, it is also intended to host datasets that were produced outside the ChArMEx program but which are meaningful to ChArMEx scientific and/or educational goals. Any data owner who wishes to add or link his dataset to ChArMEx database is welcome to contact the database manager in order to get help and support. The ChArMEx database includes past and recent geophysical in situ observations, satellite products and model outputs. The database organizes the data management and provides data services to end-users of ChArMEx data. The database system provides a detailed description of the products and uses standardized formats whenever it is possible. It defines the access rules to the data and details the mutual rights and obligations of data providers and users (see ChArMEx data and publication policy). The database is being developed jointly by : SEDOO, OMP Toulouse , ICARE, Lille and ESPRI, IPSL Paris
Country
China Meteorological Data Service Center, an upgraded system of the meteorological data sharing network, is an important component of the underlying national science and technology platform and a main portal application system of meteorological cloud. It is an authoritative and unified shared service platform for China Meteorological Administration to open its meteorological data resources to domestic and global users, and a data supporting platform for China to open its meteorological service market and promote the sharing and efficient application of meteorological information resources as a new meteorological service system. The comprehensive meteorological database provide online and offline shared services, the existing data types including global upper-air sounding data, surface observations, ocean observations, numerical forecast products, agro-meteorological data of ground observation data encryption, aircraft soundings, numerical weather prediction analysis field data, GPS-Met, Storm 2 No, GOES-9 satellite data, soil moisture, aircraft reported sandstorm monitoring, TOVS, ATOVS, wind profilers, satellite detection information.
Country
Chinese National Arctic & Antarctic Data Center(CN-NADC) is a national facility within the Polar research institute of China (PRIC), which is a research institute under the State Oceanic Administration (SOA) of China. CN-NADC was established in response to Chinese participation in the Article III.1.c of Antarctic Treaty System - (ATS — http://www.ats.aq) and Chinese Polar Data Policy(http://www.chinare.org.cn/standardDetail/?id=477). CN-NADC serves as the only authorized institution in China to capture, standard manage and long-term preserve the data and samples information, and to provide sustainable polar data service. In 2003, CN-NADC became one of the nodes of ‘National Data Sharing Infrastructure of Earth Science’ (GEODATA,http://www.geodata.cn/), which’s one of the Platforms of the National Science and Technology Infrastructures (NSTI, http://www.escience.gov.cn/) supported by the Ministry of Science and Technology (MOST) and the Ministry of Finance of People’s Republic of China.
Climate4impact: a dedicated interface to ESGF for the climate impact community The portal Climate4impact, part of the ENES Data Infrastructure, provides access to data and quick looks of global and regional climate models and downscaled higher resolution climate data. The portal provides data transformation tooling and mapping & plotting capabilities, guidance, documentation, FAQ and examples.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
coastMap offers campaign data, model analysis and thematic maps predominantly in the Biogeosciences. Spotlights explain in a nutshell important topics of the research conducted for the interested public. The portal offers applications to visualise and download field and laboratory work and to connect the information with interactive maps. Filter functions allow the user to search for general topics like a marine field of interest or single criteria, for example a specific ship campaign or one of 1000 measured parameters. The Model Analysis Tool uses a "Big Data" approach and allows expert of different disciplines to access detailed and high-resolution oceanographic model data. An interface is provided to statistically examine and download subsets of model-derived data.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The Detection of Archaeological Residues using Remote-sensing Techniques (DART) project was initiated in 2010 in order to investigate the ability of various sensors to detect archaeological features in ‘difficult’ circumstances. Concluding in September 2013, DART had the overall aim of developing analytical methods for identifying and quantifying gradual changes and dynamics in sensor responses associated with surface and near-surface archaeological features under different environmental and land-management conditions.
Country
The Database for Hydrological Time Series of Inland Waters (DAHITI) was developed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) in 2013. DAHITI provides water level time series of lakes, reservoirs, rivers, and wetlands derived from multi-mission satellite altimetry for hydrological applications. All water level time series are free available for the user community after a short registration process.
GRID-Geneva is a unique platform providing analyses and solutions for a wide range of environmental issues. GRID-Geneva serves primarily the needs of its three institutional partners - UNEP, the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe) - which are linked by an ongoing, multi-year “Partnership Agreement”, along with other local-to-global stakeholders. GRID-Geneva is also a bilingual English and French centre and the key francophone link within the global GRID network of centres. GRID-Geneva is a key centre of geo-spatial know-how, with strengths in GIS, IP/remote sensing and statistical analyses, integrated through modern spatial data infrastructures and web applications. Working at the interface between scientific information and policy/decision-making, GRID-Geneva also helps to develop capacities in these fields of expertise among target audiences, countries and other groups.
DLESE is the Digital Library for Earth System Education, a geoscience community resource that supports teaching and learning about the Earth system. It is funded by the National Science Foundation and is being built by a community of educators, students, and scientists to support Earth system education at all levels and in both formal and informal settings. Resources in DLESE include lesson plans, scientific data, visualizations, interactive computer models, and virtual field trips - in short, any web-accessible teaching or learning material. Many of these resources are organized in collections, or groups of related resources that reflect a coherent, focused theme. In many ways, digital collections are analogous to collections in traditional bricks-and-mortar libraries.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
The Environmental Data Explorer is the authoritative source for data sets used by UNEP and its partners in the Global Environment Outlook (GEO) report and other integrated environment assessments. Its online database holds more than 500 different variables, as national, subregional, regional and global statistics or as geospatial data sets (maps), covering themes like Freshwater, Population, Forests, Emissions, Climate, Disasters, Health and GDP. Display them on-the-fly as maps, graphs, data tables or download the data in different formats