Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
IoT Lab is a research platform exploring the potential of crowdsourcing and Internet of Things for multidisciplinary research with more end-user interactions. IoT Lab is a European Research project which aims at researching the potential of crowdsourcing to extend IoT testbed infrastructure for multidisciplinary experiments with more end-user interactions. It addresses topics such as: - Crowdsourcing mechanisms and tools; - “Crowdsourcing-driven research”; - Virtualization of crowdsourcing and testbeds; - Ubiquitous Interconnection and Cloudification of testbeds; - Testbed as a Service platform; - Multidisciplinary experiments; - End-user and societal value creation; - Privacy and personal data protection.
The Energy Data eXchange (EDX) is an online collection of capabilities and resources that advance research and customize energy-related needs. EDX is developed and maintained by NETL-RIC researchers and technical computing teams to support private collaboration for ongoing research efforts, and tech transfer of finalized DOE NETL research products. EDX supports NETL-affiliated research by: Coordinating historical and current data and information from a wide variety of sources to facilitate access to research that crosscuts multiple NETL projects/programs; Providing external access to technical products and data published by NETL-affiliated research teams; Collaborating with a variety of organizations and institutions in a secure environment through EDX’s ;Collaborative Workspaces
Content type(s)
A machine learning data repository with interactive visual analytic techniques. This project is the first to combine the notion of a data repository with real-time visual analytics for interactive data mining and exploratory analysis on the web. State-of-the-art statistical techniques are combined with real-time data visualization giving the ability for researchers to seamlessly find, explore, understand, and discover key insights in a large number of public donated data sets. This large comprehensive collection of data is useful for making significant research findings as well as benchmark data sets for a wide variety of applications and domains and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have built a multi-level interactive visual analytics engine that allows users to visualize and interactively explore the data in a free-flowing manner.