Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
The Protein Circular Dichroism Data Bank (PCDDB) provides and accepts a circular dichroism spectra data. The PCDDB and it's parent organization, the Institute of Structural and Molecular Biology (ISMB), investigate molecular structure using techniques such as biomolecular nuclear magnetic resonance, X-ray crystallography and computational structure prediction, as methods for protein production and biological characterization.
STRENDA DB is a storage and search platform supported by the Beilstein-Institut that incorporates the STRENDA Guidelines in a user-friendly, web-based system. If you are an author who is preparing a manuscript containing functional enzymology data, STRENDA DB provides you the means to ensure that your data sets are complete and valid before you submit them as part of a publication to a journal. Data entered in the STRENDA DB submission form are automatically checked for compliance with the STRENDA Guidelines; users receive warnings informing them when necessary information is missing.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.