Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
Country
HYdrological cycle in the Mediterranean EXperiemnt. Considering the science and societal issues motivating HyMeX, the programme aims to : improve our understanding of the water cycle, with emphasis on extreme events, by monitoring and modelling the Mediterranean atmosphere-land-ocean coupled system, its variability from the event to the seasonal and interannual scales, and its characteristics over one decade (2010-2020) in the context of global change, assess the social and economic vulnerability to extreme events and adaptation capacity.The multidisciplinary research and the database developed within HyMeX should contribute to: improve observational and modelling systems, especially for coupled systems, better predict extreme events, simulate the long-term water-cycle more accurately, provide guidelines for adaptation measures, especially in the context of global change.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
The IGS global system of satellite tracking stations, Data Centers, and Analysis Centers puts high-quality GPS data and data products on line in near real time to meet the objectives of a wide range of scientific and engineering applications and studies. The IGS collects, archives, and distributes GPS observation data sets of sufficient accuracy to satisfy the objectives of a wide range of applications and experimentation. These data sets are used by the IGS to generate the data products mentioned above which are made available to interested users through the Internet. In particular, the accuracies of IGS products are sufficient for the improvement and extension of the International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth deformations, the monitoring of Earth rotation and variations in the liquid Earth (sea level, ice-sheets, etc.), for scientific satellite orbit determinations, ionosphere monitoring, and recovery of precipitable water vapor measurements.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.