Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 54 result(s)
Country
The COSYNA observatory measures key physical, sedimentary, geochemical and biological parameters at high temporal resolution in the water column and at the sediment and atmospheric boundaries. COSYNA delivers spatial representation through a set of fixed and moving platforms, like tidal flats poles, FerryBoxes, gliders, ship surveys, towed devices, remote sensing, etc.. New technologies like underwater nodes, benthic landers and automated sensors for water biogeochemical parameters are further developed and tested. A great variety of parameters is measured and processed, stored, analyzed, assimilated into models and visualized.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.
Within WASCAL a large number of heterogeneous data are collected. These data are mainly coming from different initiated research activities within WASCAL (Core Research Program, Graduate School Program) from the hydrological-meteorological, remote sensing, biodiversity and socio economic observation networks within WASCAL, and from the activities of the WASCAL Competence Center in Ouagadougou, Burkina-Faso.
ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).
<<<!!!<<< The repository is no longer available. >>>!!!>>> The website is archived: https://web.archive.org/web/20161118010932/http:/ourocean.jpl.nasa.gov/ You can follow links to navigate further into archived content from that site.
Country
The Database for Hydrological Time Series of Inland Waters (DAHITI) was developed by the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) in 2013. DAHITI provides water level time series of lakes, reservoirs, rivers, and wetlands derived from multi-mission satellite altimetry for hydrological applications. All water level time series are free available for the user community after a short registration process.
Country
The data page makes the data that PCIC collects and produces publicly available with an open license. The page presently provides access to BC Station Data, High-Resolution Climatology, Downscaled Climate Scenarios and VIC Hydrologic Model Output and Extreme Indices calculated from CMIP5.
The National Earth Observation Science Data Center, whose predecessor was the National Integrated Earth Observation Data Sharing Platform, has formed a sustainable, cross-agency, one-stop data sharing service capability after years of construction, and it is also the main channel for international exchange of remote sensing data in China. In the future, it will manage and coordinate scientific data resources in the field of earth observation on behalf of the country, and build a national-level earth observation big data infrastructure. Coordinate various industry data centers, scientific research institutions and enterprises in the field of Earth observation in China to cooperate in building a national strategic, fundamental, scientific, internationalized, and independent and controllable scientific big data environment in the field of Earth observation. On the basis of the already formed data ecology and cooperation mechanism, data sharing services, and international data cooperation, we will actively expand to the whole life cycle management of data and carry out data management work such as the collection, management, analysis and mining, and sharing services of national scientific data resources for Earth observation. Form a unified technical support system and data sharing service environment for Earth observation data in China. Maintain and enhance its international influence and become a domestic and international first-class scientific data center for Earth observation!
<<<!!!<<< The demand for high-value environmental data and information has dramatically increased in recent years. To improve our ability to meet that demand, NOAA’s former three data centers—the National Climatic Data Center, the National Geophysical Data Center, and the National Oceanographic Data Center, which includes the National Coastal Data Development Center—have merged into the National Centers for Environmental Information (NCEI). >>>!!!>>> The National Oceanographic Data Center includes the National Coastal Data Development Center (NCDDC) and the NOAA Central Library, which are integrated to provide access to the world's most comprehensive sources of marine environmental data and information. NODC maintains and updates a national ocean archive with environmental data acquired from domestic and foreign activities and produces products and research from these data which help monitor global environmental changes. These data include physical, biological and chemical measurements derived from in situ oceanographic observations, satellite remote sensing of the oceans, and ocean model simulations.
Country
<<<!!!<<< The website www.geobase.ca/ closed in January 2015. >>>!!!>>> All GeoBase products are available on the Open Government of Canada portal: https://open.canada.ca/data/en/dataset?q=geobase&organization=nrcan-rncan GeoBase initiative provides geospatial data of the entire Canadian landmass for government, business, and/or personal assessments of sustainable resource development, public safety, sanitation, and environmental protection. Data is available for download as ESRI Shapefile, FGDB, KML, and GML.
Western Regional Climate Center (WRCC) provides historical and current climate data for the western United States. WRCC is one of six regional climate centers partnering with NOAA research institutes to promote climate research and data stewardship.
Content type(s)
Country
Sextant is a marine and coastal geographic data infrastructure. It is operated by Scientific Information Systems for the Sea (SISMER) of Ifremer (https://www.ifremer.fr/). Sextant aims to document, disseminate and promote a catalog of data related to the marine environment. For Ifremer's laboratories and partners, as well as for national and European actors working in the marine and coastal field, Sextant provides tools that promote and facilitate the archiving, consultation and availability of these geographical data. Data published by Sextant are available free or restricted. They can be used in accordance with the terms of the Creative Commons license selected by the author of data. Sextant infrastructure and the technologies used are in line with the implementation of the INSPIRE Directive and make it possible to follow the Open Data approach. Some data set published by Sextant has a DOI which enables it to be cited in a publication in a reliable and sustainable way. The long-term preservation of data filed in Sextant is ensured by Ifremer infrastructure.
The main objective of the project is to digitize the data collected by the Maritime Administration and make it available for reuse by digitizing analog resources, integrating and harmonizing data and building a digital repository, and disseminating information about the resources collected in the system. The aim of the project is to make maritime administration data sets available on the Internet.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
HYdrological cycle in the Mediterranean EXperiemnt. Considering the science and societal issues motivating HyMeX, the programme aims to : improve our understanding of the water cycle, with emphasis on extreme events, by monitoring and modelling the Mediterranean atmosphere-land-ocean coupled system, its variability from the event to the seasonal and interannual scales, and its characteristics over one decade (2010-2020) in the context of global change, assess the social and economic vulnerability to extreme events and adaptation capacity.The multidisciplinary research and the database developed within HyMeX should contribute to: improve observational and modelling systems, especially for coupled systems, better predict extreme events, simulate the long-term water-cycle more accurately, provide guidelines for adaptation measures, especially in the context of global change.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
GLOBE (Global Collaboration Engine) is an online collaborative environment that enables land change researchers to share, compare and integrate local and regional studies with global data to assess the global relevance of their work.
Country
coastMap offers campaign data, model analysis and thematic maps predominantly in the Biogeosciences. Spotlights explain in a nutshell important topics of the research conducted for the interested public. The portal offers applications to visualise and download field and laboratory work and to connect the information with interactive maps. Filter functions allow the user to search for general topics like a marine field of interest or single criteria, for example a specific ship campaign or one of 1000 measured parameters.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.