Content Types


AID systems



Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type


Metadata standards

PID systems

Provider types

Quality management

Repository languages



Repository types


  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 123 result(s)
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is an element of the Earth Observing System Data and Information System (EOSDIS). The EOSDIS provides science data to a wide community of users for NASA's Science Mission Directorate. Since the launch of NASA's first ocean-observing satellite, Seasat, in 1978, PO.DAAC has become the premier data center for measurements focused on ocean surface topography (OST), sea surface temperature (SST), ocean winds, sea surface salinity (SSS), gravity, ocean circulation and sea ice.In addition to providing access to its data holdings, PO.DAAC acts as a gateway to data stored at other ocean and climate archives. This and other tools and services enable PO.DAAC to support a wide user community working in areas such as ocean and climate research, applied science and industry, natural resource management, policy making, and general public consumption.
The Ocean Date and Information System provides information on physical, chemical, biological and geological parameters of ocean and coasts on spatial and temporal domains that is vital for both research and operational oceanography. In-situ and remote sensing data are included. The Ocean Information Bank is supported by the data received from Ocean Observing Systems in the Indian Ocean (both the in-situ platforms and satellites) as well as by a chain of Marine Data Centres. Ocean and coastal measurements are available. Data products are accessible through various portals on the site and are largely available by data type (in situ or remote sensing) and then by parameter.
Global Ocean Ecosystem Dynamics (GLOBEC) is the International Geosphere-Biosphere Programme (IGBP) core project responsible for understanding how global change will affect the abundance, diversity and productivity of marine populations. The programme was initiated by SCOR and the IOC of UNESCO in 1991, to understand how global change will affect the abundance, diversity and productivity of marine populations comprising a major component of oceanic ecosystems. The aim of GLOBEC is to advance our understanding of the structure and functioning of the global ocean ecosystem, its major subsystems, and its response to physical forcing so that a capability can be developed to forecast the responses of the marine ecosystem to global change. U.S. GLOBEC Programm includes the Georges Bank / NW Atlantic Programm, the Northeast Pacific Programm and the Southern Ocean Program.
GEOMAR Helmholtz Centre for Ocean Research Kiel is one of the leading marine science institutions in Europe. GEOMAR investigates the chemical, physical, biological, and geological processes in the oceans, as well as their interactions with the seafloor and the atmosphere. OceanRep is an open access digital collection containing the research output of GEOMAR staff and students. Included are journal articles, conference papers, book chapters, theses and more, - with fulltext, if available. Research data are linked to the publications entries.
The primary focus of the Upper Ocean Processes Group is the study of physical processes in the upper ocean and at the air-sea interface using moored surface buoys equipped with meteorological and oceanographic sensors. UOP Project Map The Upper Ocean Processes Group provides technical support to upper ocean and air-sea interface science programs. Deep-ocean and shallow-water moored surface buoy arrays are designed, fabricated, instrumented, tested, and deployed at sea for periods of up to one year
MEMENTO aims to become a valuable tool for identifying regions of the world ocean that should be targeted in future work to improve the quality of air-sea flux estimates.
Ocean Networks Canada maintains several observatories installed in three different regions in the world's oceans. All three observatories are cabled systems that can provide power and high bandwidth communiction paths to sensors in the ocean. The infrastructure supports near real-time observations from multiple instruments and locations distributed across the Arctic, NEPTUNE and VENUS observatory networks. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible.
The Bremen Core Repository - BCR, for International Ocean Discovery Program (IODP), Integrated Ocean Discovery Program (IODP), Ocean Drilling Program (ODP), and Deep Sea Drilling Project (DSDP) cores from the Atlantic Ocean, Mediterranean and Black Seas and Arctic Ocean is operated at University of Bremen within the framework of the German participation in IODP. It is one of three IODP repositories (beside Gulf Coast Repository (GCR) in College Station, TX, and Kochi Core Center (KCC), Japan). One of the scientific goals of IODP is to research the deep biosphere and the subseafloor ocean. IODP has deep-frozen microbiological samples from the subseafloor available for interested researchers and will continue to collect and preserve geomicrobiology samples for future research.
NEPTUNE Canada, the North-East Pacific Time-series Undersea Networked Experiments, is the world's first regional scale cabled deep ocean observing network. It consists of an 800km network of electro‐optic cable laid on the seabed over the northern Juan de Fuca tectonic plate, off the coast of British Columbia. This tectonic plate serves as an exceptional natural laboratory for ocean observation and experiments. NEPTUNE Canada instruments yield continuous real‐time data and imagery from the ocean surface to beneath the seafloor, and from the coast to the deep sea. They respond to events such as earthquakes, tsunamis, fish migrations, plankton blooms, storms and volcanic eruptions. NEPTUNE Canada offers a unique and exciting approach to ocean science.
The Institute of Ocean Sciences (IOS)/Ocean Sciences Division (OSD) data archive contains the holdings of oceanographic data generated by the IOS and other agencies and laboratories, including the Institute of Oceanography at the University of British Columbia and the Pacific Biological Station. The contents include data from B.C. coastal waters and inlets, B.C. continental shelf waters, open ocean North Pacific waters, Beaufort Sea and the Arctic Archipelago.
The World Ocean Database (WOD) provides access to scientifically quality-controlled global ocean profile and plankton data that includes measured in situ variables gathered since 1773. WOD contains the World Ocean Database 2013 (WOD13) with the full set of quality control used to create World Ocean Atlas 2013 (WOA13) and all updates to the database (Apr. 2013 to present) with only initial quality control. Note: The WOD13 has extended standard depth levels.
The U.S. launched the Joint Global Ocean Flux Study (JGOFS) in the late 1980s to study the ocean carbon cycle. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. As we studied ocean biogeochemistry, we learned that our simple views of carbon uptake and transport were severely limited, and a new "wave" of ocean science was born. U.S. JGOFS has been supported primarily by the U.S. National Science Foundation in collaboration with the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the Department of Energy and the Office of Naval Research. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP).
The CCHDO provides data collection and documentation, primarily from research funded by the NSF. Data and documentation in this database includes research from the World Ocean Circulation Experiment, and Climate Variability and Predictability (CLIVAR). Data can be browsed by ocean, time series, project, or map.
The International Ocean Discovery Program’s (IODP) Gulf Coast Repository (GCR) is located in the Research Park on the Texas A&M University campus in College Station, Texas. This repository stores DSDP, ODP, and IODP cores from the Pacific Ocean, the Caribbean Sea and Gulf of Mexico, and the Southern Ocean. A satellite repository at Rutgers University houses New Jersey/Delaware land cores 150X and 174AX.
WHOI is the world's leading non-profit oceanographic research organization. WHOI maintains unparalleled depth and breadth of expertise across a range of oceanographic research areas. Institution scientists and engineers work collaboratively within and across six research departments to advance knowledge of the global ocean and its fundamental importance to other planetary systems. At the same time, they also train future generations of ocean scientists and address problems that have a direct impact in efforts to understand and manage critical marine resources.
At 2016-05-29 sees the official merger of the IMOS eMarine Information Infrastructure (eMII) Facility and the Australian Ocean Data Network (AODN) into a single entity. The marine information Facility of IMOS is now the AODN. Enabling open access to marine data is core business for IMOS. The IMOS data will continue to be discoverable alongside a wider collection of Australian marine and climate data via the new-look AODN Portal. Visit the AODN Portal at . - IMOS is designed to be a fully-integrated, national system, observing at ocean-basin and regional scales, and covering physical, chemical and biological variables. IMOS observations are guided by science planning undertaken collaboratively across the Nodes of the Australian marine and climate science community with input from government, industry and other stakeholders. There are five major research themes that unify IMOS science plans and related observations: Long-term ocean change, Climate variability and weather extremes, Boundary currents, Continental shelf and coastal processes, and Ecosystem responses. The observations and data streams are collected via ten technology platforms, or Facilities.
VENUS coastal network, part of the Ocean Networks Canada Observatory, is a cabled undersea laboratory for ocean researchers and explorers. VENUS delivers real time information from seafloor instruments via fibre optic cables to the University of Victoria, BC. You can see ocean data live, recent and archived as well as learn more about on-going research
Argo is an international programme using autonomous floats to collect temperature, salinity and current data in the ice-free oceans. It is teamed with the Jason ocean satellite series.Argo will soon reach its target of 3000 floats delivering data within 24 hours to researchers and operational centres worldwide. 23 countries contribute floats to Argo and many others help with float deployments. Argo has revolutionized the collection of information from inside the oceans. ARGO Project is organized in regional and national Centers with a Project Office, an Information Center (AIC) and 2 Global Data Centers (GDAC), at the United States and at France. Each DAC submits regularly all its new files to both USGODAE and Coriolis GDACs.The whole Argo data set is available in real time and delayed mode from the global data centres (GDACs). The internet addresses are: • • .
U.S. IOOS is a vital tool for tracking, predicting, managing, and adapting to changes in our ocean, coastal and Great Lakes environment. A primary focus of U.S. IOOS is integration of, and expedited access to, ocean observation data for improved decision making. The Data Management and Communication (DMAC) subsystem of U.S. IOOS serves as a central mechanism for integrating all existing and projected data sources.
Seafloor data at these locations include multibeam bathymetry, high-resolution scanning altimetry, deep-towed sidescan sonar, seafloor digital photographs, sample locations, deep-towed magnetic data, and more. Each dataset is geospatially registered and incorporates metadata (e.g., sample geochemistry and time and depth of collection) that can be interactively accessed by the user. The user can control which datasets are shown on a map view of the area and the scale at which the map is viewed. Datasets with resolutions inappropriate for the scale at which they are being viewed are automatically removed from the map.
The Argo observational network consists of a fleet of 3000+ profiling autonomous floats deployed by about a dozen teams worldwide. WHOI has built about 10% of the global fleet. The mission lifetime of each float is about 4 years. During a typical mission, each float reports a profile of the upper ocean every 10 days. The sensors onboard record fundamental physical properties of the ocean: temperature and conductivity (a measure of salinity) as a function of pressure. The depth range of the observed profile depends on the local stratification and the float's mechanical ability to adjust it's buoyancy. The majority of Argo floats report profiles between 1-2 km depth. At each surfacing, measurements of temperature and salinity are relayed back to shore via satellite. Telemetry is usually received every 10 days, but floats at high-latitudes which are iced-over accumulate their data and transmit the entire record the next time satellite contact is established. With current battery technology, the best performing floats last 6+ years and record over 200 profiles.